Exponentially Convergent Multiscale Methods

for solving elliptic and Helmholtz's equation

Yifan Chen
Computing and Mathematical Sciences, Caltech

May 2023

Thomas Hou
Caltech

Yixuan Wang
Caltech

- Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions, SIAM-MMS, 2021
- Exponentially Convergent Multiscale Methods for 2D High Frequency Heterogeneous Helmholtz Equations, SIAM-MMS, 2022
- Exponentially Convergent Multiscale Finite Element Method, CAMC, 2022 (review paper)

Outline

1 The Problems of Heterogeneity and High Frequency

2 The Challenges in Numerical Approximation

3 The Methodology of Exponential Convergence

4 Our Contributions: Helmholtz's Equation and Nonoverlapping

Outline

1 The Problems of Heterogeneity and High Frequency

2 The Challenges in Numerical Approximation

3 The Methodology of Exponential Convergence

4 Our Contributions: Helmholtz's Equation and Nonoverlapping

Multiscale Problems: Heterogeneous Media and High Frequency Waves

Figure: Heterogeneity and high frequency

Figure credited to Google online search

Mathematical Setup

Model problem:
$-\nabla \cdot(A \nabla u)+V u=f$, in Ω, \quad w/ boundary conditions
(subsurface flows, diffusions, elasticity, waves)

Mathematical Setup

Model problem:
$-\nabla \cdot(A \nabla u)+V u=f$, in Ω, w/boundary conditions (subsurface flows, diffusions, elasticity, waves)

Mathematical conditions:

- Heterogeneity:

$$
A, V \in L^{\infty}(\Omega), \text { and } 0<A_{\min } \leq A(x) \leq A_{\max }<\infty
$$

- High frequency:

$$
\text { e.g., } V=-k^{2} \text { (Helmholtz's equation) }
$$

Outline

1 The Problems of Heterogeneity and High Frequency

2 The Challenges in Numerical Approximation

3 The Methodology of Exponential Convergence

4 Our Contributions: Helmholtz's Equation and Nonoverlapping

Literature: Scale Separation v.s. Continuum of Scales

Explicit scale parameter ϵ : $A=A(x, x / \epsilon)$

- Theory: with scale separation and periodicity assumptions \Rightarrow there is a homogenized $A_{0}=A_{0}(x)$ when $\epsilon \rightarrow 0$
- Coarse scale behaviors of the solution are often identified using asymptotic analysis and homogenization theory

Literature: Scale Separation v.s. Continuum of Scales

Explicit scale parameter ϵ : $A=A(x, x / \epsilon)$

- Theory: with scale separation and periodicity assumptions \Rightarrow there is a homogenized $A_{0}=A_{0}(x)$ when $\epsilon \rightarrow 0$
- Coarse scale behaviors of the solution are often identified using asymptotic analysis and homogenization theory

Continuum of scales: $A \in L^{\infty}$

- Find local basis functions that capture the fine scale information, and use them to identify the correct coarse scale behaviors of the solution
- "Coarse scale" becomes a design choice in numerical approximation

Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:

- Construct basis functions and plug them into the variational form
- Key: Quasi-optimality, i.e.,

Galerkin solution err \sim optimal approx-err in $\|\cdot\|_{\mathcal{H}(\Omega)}$

Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:

- Construct basis functions and plug them into the variational form
- Key: Quasi-optimality, i.e.,

Galerkin solution err \sim optimal approx-err in $\|\cdot\|_{\mathcal{H}(\Omega)}$
Challenges:

- Heterogeneity $\Rightarrow u$ or ∇u is oscillatory (!) approx-err of FEM can be arbitrarily bad [Babuška, Osborn 2000]

Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:

- Construct basis functions and plug them into the variational form
- Key: Quasi-optimality, i.e.,

$$
\text { Galerkin solution err } \sim \text { optimal approx-err in }\|\cdot\|_{\mathcal{H}(\Omega)}
$$

Challenges:

- Heterogeneity $\Rightarrow u$ or ∇u is oscillatory
(!) approx-err of FEM can be arbitrarily bad [Babuška, Osborn 2000]
- High frequency \Rightarrow stability issues

$$
\text { e.g., }\|u\|_{\mathcal{H}(\Omega)} \leq C_{\text {stab }}(k)\|f\|_{L^{2}(\Omega)} \text { for } C_{\text {stab }}(k) \succeq 1+k^{\gamma}
$$

(!) approx-err amplified by the stability constant

- quasi-optimality also deteriorates, e.g., require $H=O\left(1 / k^{2}\right)$
- phenomenon known as pollution effect [Babuška, Sauter, 1997]

Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:

- Construct basis functions and plug them into the variational form
- Key: Quasi-optimality, i.e.,

$$
\text { Galerkin solution err } \sim \text { optimal approx-err in }\|\cdot\|_{\mathcal{H}(\Omega)}
$$

Challenges:

- Heterogeneity $\Rightarrow u$ or ∇u is oscillatory
(!) approx-err of FEM can be arbitrarily bad [Babuška, Osborn 2000]
- High frequency \Rightarrow stability issues

$$
\text { e.g., }\|u\|_{\mathcal{H}(\Omega)} \leq C_{\text {stab }}(k)\|f\|_{L^{2}(\Omega)} \text { for } C_{\text {stab }}(k) \succeq 1+k^{\gamma}
$$

(!) approx-err amplified by the stability constant

- quasi-optimality also deteriorates, e.g., require $H=O\left(1 / k^{2}\right)$
- phenomenon known as pollution effect [Babuška, Sauter, 1997]
(!) Need high accuracy approximation

Outline

1 The Problems of Heterogeneity and High Frequency

2 The Challenges in Numerical Approximation

3 The Methodology of Exponential Convergence

4 Our Contributions: Helmholtz's Equation and Nonoverlapping

How to Approximate A Function with High Accuracy?

When the function is smooth:

How to Approximate A Function with High Accuracy?

When the function is smooth:

- Just choose polynomial basis functions for approximation \Rightarrow exponential convergence of accuracy

How to Approximate A Function with High Accuracy?

When the function is smooth:

- Just choose polynomial basis functions for approximation

$$
\Rightarrow \text { exponential convergence of accuracy }
$$

- e.g., $h p$-FEM for solving PDEs with smooth solutions
- provably handles pollution effects in Helmholtz's equation with $p=O(\log k)$ [Melenk, Sauter 2010, 2011]

How to Approximate A Function with High Accuracy?

When the function is smooth:

- Just choose polynomial basis functions for approximation

$$
\Rightarrow \text { exponential convergence of accuracy }
$$

- e.g., $h p$-FEM for solving PDEs with smooth solutions
- provably handles pollution effects in Helmholtz's equation with $p=O(\log k)$ [Melenk, Sauter 2010, 2011]

If the function is non-smooth?

Exponential Convergence for Approximating A-harmonic functions

Warm-up: A-harmonic functions

- Function space: assume $0<A_{\text {min }} \leq A(x) \leq A_{\text {max }}<\infty$

$$
U(D):=\left\{v \in H^{1}(D),-\nabla \cdot(A \nabla v)=0 \text { in } D\right\} / \mathbb{R}
$$

- Norm:

$$
\|v\|_{H_{A}^{1}(D)}:=\left\|A^{1 / 2} \nabla v\right\|_{L^{2}(D)}
$$

Exponential Convergence for Approximating A-harmonic functions
Warm-up: A-harmonic functions

- Function space: assume $0<A_{\text {min }} \leq A(x) \leq A_{\text {max }}<\infty$

$$
U(D):=\left\{v \in H^{1}(D),-\nabla \cdot(A \nabla v)=0 \text { in } D\right\} / \mathbb{R}
$$

- Norm:

$$
\|v\|_{H_{A}^{1}(D)}:=\left\|A^{1 / 2} \nabla v\right\|_{L^{2}(D)}
$$

Theorem [Babuška, Lipton 2011]
The singular values $\sigma_{m}(R)$ of the restriction operator

$$
R:\left(U\left(\omega^{*}\right),\|\cdot\|_{H_{A}^{1}\left(\omega^{*}\right)}\right) \rightarrow\left(U(\omega),\|\cdot\|_{H_{A}^{1}(\omega)}\right)
$$

decays nearly exponentially fast:

$$
\sigma_{m}(R) \leq C_{\epsilon} \exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)
$$

for some C_{ϵ} independent of H and m

Approximating A-harmonic functions can be exponentially convergent

- For any $u \in H_{A}^{1}\left(\omega^{*}\right)$, there are m functions $v_{j}, 1 \leq j \leq m$

$$
\left\|u-\sum_{j=1}^{m} c_{j} v_{j}\right\|_{H_{A}^{1}(\omega)} \leq C_{\epsilon} \exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)\|u\|_{H_{A}^{1}\left(\omega^{*}\right)}
$$

- v_{j} are left singular vectors of the restriction operator R

Approximating A-harmonic functions can be exponentially convergent

- For any $u \in H_{A}^{1}\left(\omega^{*}\right)$, there are m functions $v_{j}, 1 \leq j \leq m$

$$
\left\|u-\sum_{j=1}^{m} c_{j} v_{j}\right\|_{H_{A}^{1}(\omega)} \leq C_{\epsilon} \exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)\|u\|_{H_{A}^{1}\left(\omega^{*}\right)}
$$

- v_{j} are left singular vectors of the restriction operator R

Summarize the property: Restrictions of A-harmonic functions are of low approximation complexity

Multiscale Spectral Generalized Finite Element Method (MS-GFEM)

[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]
For elliptic equations with rough coefficients

$$
-\nabla \cdot(A \nabla u)=f, \text { in } \Omega, \text { w/ boundary conditions }
$$

Multiscale Spectral Generalized Finite Element Method (MS-GFEM)

[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]
For elliptic equations with rough coefficients

$$
-\nabla \cdot(A \nabla u)=f, \text { in } \Omega, \quad \text { w } / \text { boundary conditions }
$$

Decompose the solution to local components:

$$
u=\sum_{i} \eta_{i} u=\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{h}}+\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}
$$

- Overlapped domain decomp.

$$
\omega_{i} \text { is of size } O(H)
$$

- Partition of unity functions $\sum_{i} \eta_{i}=1$, supp $\eta_{i}=\omega_{i}, \eta_{i}$ smooth
- Harmonic-bubble splitting

$$
\begin{aligned}
& \left\{\begin{aligned}
-\nabla \cdot\left(A \nabla u_{\omega_{i}}^{\mathrm{h}}\right)=0, & \text { in } \omega_{i} \\
u_{\omega_{i}}^{\mathrm{h}}=u, & \text { on } \partial \omega_{i}
\end{aligned}\right. \\
& \left\{\begin{aligned}
-\nabla \cdot\left(A \nabla u_{\omega_{i}}^{\mathrm{b}}\right)=f, & \text { in } \omega_{i} \\
u_{\omega_{i}}^{\mathrm{b}}=0, & \text { on } \partial \omega_{i}
\end{aligned}\right.
\end{aligned}
$$

Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

$$
u=\sum_{i} \eta_{i} u=\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{h}}+\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}
$$

- $\eta_{i} u_{\omega_{i}}^{\mathrm{h}}$ is a restriction of an A-harmonic function, so can be approximated by basis functions with nearly exponential accuracy

Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

$$
u=\sum_{i} \eta_{i} u=\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{h}}+\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}
$$

- $\eta_{i} u_{\omega_{i}}^{\mathrm{h}}$ is a restriction of an A-harmonic function, so can be approximated by basis functions with nearly exponential accuracy

$$
\Rightarrow u=\underbrace{\sum_{i} \sum_{k=1}^{m} c_{i, k} v_{i, k}}_{\mathrm{II})}+O\left(\exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)\|u\|_{H_{A}^{1}(\Omega)}\right)+\underbrace{\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}}_{\text {(II) }}
$$

Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

$$
u=\sum_{i} \eta_{i} u=\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{h}}+\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}
$$

- $\eta_{i} u_{\omega_{i}}^{\mathrm{h}}$ is a restriction of an A-harmonic function, so can be approximated by basis functions with nearly exponential accuracy

$$
\Rightarrow u=\underbrace{\sum_{i} \sum_{k=1}^{m} c_{i, k} v_{i, k}}_{\text {(I) }}+O\left(\exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)\|u\|_{H_{A}^{1}(\Omega)}\right)+\underbrace{\sum_{i} \eta_{i} u_{\omega_{i}}^{\mathrm{b}}}_{\text {(II) }}
$$

Offline: for a given A, one constructs local basis functions

- Compute $v_{i, k}$ in (I) by solving local spectral problems

Online: given any source term f, one solves u

- Compute (II) by solving local equations
- Compute (I) by Galerkin's method with offline basis functions

Outline

1 The Problems of Heterogeneity and High Frequency

2 The Challenges in Numerical Approximation

3 The Methodology of Exponential Convergence

4 Our Contributions: Helmholtz's Equation and Nonoverlapping

Our Contributions: New Local Structures and Global Coupling

Multiscale methods for Helmholtz's equation
[Peterseim 2017], [Peterseim, Verfürth 2020], [Fu, Li, Craster, Guenneau 2021]

$$
-\nabla \cdot(A \nabla u)-k^{2} u=f, \text { in } \Omega, \quad \mathrm{w} / \text { boundary conditions }
$$

- No pre-existing results on achieving exponential convergence
- Question: What is the structure of low approximation complexity?
- Difficulty: Indefiniteness of the operator

Non-overlapped domain decomposition [Hou, Wu 1997], [Hou, Liu 2015]

- Advantage: More localized domains, local functions less overlapped (more efficient in stiffness matrix assembly)
- Difficulty: Non-overlapping, interaction through edges

Helmholtz-harmonic functions

- Function space:

$$
U_{k}(D):=\left\{v \in H^{1}(D),-\nabla \cdot(A \nabla v)-k^{2} v=0 \text { in } D\right\} / \mathbb{R}
$$

- Energy norm:

$$
\|v\|_{\mathcal{H}(D)}^{2}:=\left\|A^{1 / 2} \nabla v\right\|_{L^{2}(D)}^{2}+\|k v\|_{L^{2}(D)}^{2}
$$

Helmholtz-harmonic functions

- Function space:

$$
U_{k}(D):=\left\{v \in H^{1}(D),-\nabla \cdot(A \nabla v)-k^{2} v=0 \text { in } D\right\} / \mathbb{R}
$$

- Energy norm:

$$
\|v\|_{\mathcal{H}(D)}^{2}:=\left\|A^{1 / 2} \nabla v\right\|_{L^{2}(D)}^{2}+\|k v\|_{L^{2}(D)}^{2}
$$

Theorem [Chen, Hou, Wang 2021], [Ma, Alber, Scheichl 2021] Let $H^{\star}=O(1 / k)$, then singular values $\sigma_{m}(R)$ of the restriction operator for Helmholtz-harmonic functions

$$
R:\left(U_{k}\left(\omega^{*}\right),\|\cdot\|_{\mathcal{H}\left(\omega^{*}\right)}\right) \rightarrow\left(U_{k}(\omega),\|\cdot\|_{\mathcal{H}(\omega)}\right)
$$

decays nearly exponentially fast:

$$
\sigma_{m}(R) \leq C_{\epsilon} \exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)
$$

for some C_{ϵ} independent of k, H and m
Key: $H^{\star}=O(1 / k) \Rightarrow$ the Helmholtz operator is locally positive definite

Our Contributions: New Local Structures and Global Coupling

Multiscale methods for Helmholtz's equation
[Peterseim 2017], [Peterseim, Verfürth 2020], [Fu, Li, Craster, Guenneau 2021]
$-\nabla \cdot(A \nabla u)-k^{2} u=f$, in $\Omega, w /$ boundary conditions

- No pre-existing results on achieving exponential convergence
- Question: What is the structure of low approximation complexity?
- Difficulty: Indefiniteness of the operator

Non-overlapped domain decomposition [Hou, Wu 1997], [Hou, Liu 2015]

- Advantage: More localized domains, local functions less overlapped (more efficient in stiffness matrix assembly)
- Difficulty: Non-overlapping, interaction through edges

Non-overlapped Domain Decomposition: Localization and Coupling

1. Decomposition using indicator funcs
$u=\sum_{i} \mathbb{1}_{T_{i}} u=\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{h}}+\underbrace{\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{b}}}_{\text {locally computable }}$

Non-overlapped Domain Decomposition: Localization and Coupling

1. Decomposition using indicator funcs
$u=\sum_{i} \mathbb{1}_{T_{i}} u=\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{h}}+\underbrace{\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{b}}}_{\text {locally computable }}$

2. Focus on edge functions

$$
\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{h}}=Q \tilde{u}^{\mathrm{h}} \in H^{1 / 2}\left(E_{H}\right)
$$

- where $Q: H^{1 / 2}\left(E_{H}\right) \rightarrow H^{1}(\Omega)$ is the Helmholtz-harmonic extension operator

Non-overlapped Domain Decomposition: Localization and Coupling

3. Edge localization

$$
\tilde{u}^{\mathrm{h}}=\underbrace{I_{H} \tilde{u}^{\mathrm{h}}}_{\text {Nodal interp. }}+\underbrace{\left(\tilde{u}^{\mathrm{h}}-I_{H} \tilde{u}^{\mathrm{h}}\right)}_{\text {Decoupled to each edges }}
$$

- $I_{H} \tilde{u}^{\mathrm{h}}=\sum_{n} u\left(x_{n}\right) \psi_{n}$ spanned by nodal basis funcs

Non-overlapped Domain Decomposition: Localization and Coupling

3. Edge localization

$$
\tilde{u}^{\mathrm{h}}=\underbrace{I_{H} \tilde{u}^{\mathrm{h}}}_{\text {Nodal interp. }}+\underbrace{\left(\tilde{u}^{\mathrm{h}}-I_{H} \tilde{u}^{\mathrm{h}}\right)}_{\text {Decoupled to each edges }}
$$

- $I_{H} \tilde{u}^{\mathrm{h}}=\sum_{n} u\left(x_{n}\right) \psi_{n}$ spanned by nodal basis funcs

4. Oversampling for exp. accuracy

$$
\begin{aligned}
&\left.\left(\tilde{u}^{\mathrm{h}}-I_{H} \tilde{u}^{\mathrm{h}}\right)\right|_{e} \\
&= \sum_{j=1}^{m} c_{j, e} \tilde{v}_{j, e}+O\left(\exp \left(-m^{\frac{1}{d+1}-\epsilon}\right)\right) \\
& \quad+\underbrace{\left.\left(u_{\omega_{e}}^{\mathrm{b}}-I_{H} u_{\omega_{e}}^{\mathrm{b}}\right)\right|_{e}}_{\text {small and locally computable }}
\end{aligned}
$$

Exponentially Convergent Multiscale Finite Element Method

Theorem [Chen, Hou, Wang 2021]
The following holds for the solution u of Helmholtz's equation

$$
\begin{aligned}
& u=(\left.\sum_{n} b_{n} \psi_{n}+\sum_{e} \sum_{j=1}^{m} c_{j, e} v_{j, e}\right) \\
&+\left(\sum_{i} \mathbb{1}_{T_{i}} u_{T_{i}}^{\mathrm{b}}+\left.\sum_{e} Q\left(u_{\omega_{e}}^{\mathrm{b}}-I_{H} u_{\omega_{e}}^{\mathrm{b}}\right)\right|_{e}\right) \\
& \quad+O\left(\exp \left(-m^{\frac{1}{d+1}}-\epsilon\right)\left(\|u\|_{\mathcal{H}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)\right)
\end{aligned}
$$

Numerical Experiments: Helmholtz's Equation

The problem set-up

- equation

$$
-\nabla \cdot(A \nabla u)+V u=f, \text { in } \Omega=[0,1]^{2}
$$

- boundary condition: mixed (Dirichlet + Neumann + Robin)
- $A(x)=|\xi(x)|+0.5$ where $\xi(x)$ is piecewise linear functions with values as unit Gaussians r.v.; piecewise scale: 2^{-7}
- $-V / k^{2}$ draws from the same random field; $k=2^{5}$
- $f\left(x_{1}, x_{2}\right)=x_{1}^{4}-x_{2}^{3}+1$

Visualization of the Field

Numerical Experiments: Helmholtz's Equation

The mesh

- quadrilateral mesh
- fine mesh size $h=2^{-10}$, coarse mesh size $H=2^{-5}$

The accuracy of ExpMsFEM's solution compared to fine mesh solution

Figure: Numerical results for the mixed boundary and rough field example. Left: $e_{\mathcal{H}}$ versus m; right: $e_{L^{2}}$ versus m. Number of basis functions $(2 m+1) / H^{2}$

