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Multiscale Problems: Heterogeneous Media and High Frequency Waves

Figure: Heterogeneity and high frequency

Figure credited to Google online search
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Mathematical Setup

Model problem:

−∇ · (A∇u) + V u = f, in Ω, w/ boundary conditions

(subsurface flows, diffusions, elasticity, waves)

Mathematical conditions:

• Heterogeneity:

A, V ∈ L∞(Ω), and 0 < Amin ≤ A(x) ≤ Amax <∞
• High frequency:

e.g., V = −k2 (Helmholtz’s equation)
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Literature: Scale Separation v.s. Continuum of Scales

Explicit scale parameter ϵ: A = A(x, x/ϵ)

• Theory: with scale separation and periodicity assumptions
⇒ there is a homogenized A0 = A0(x) when ϵ→ 0

• Coarse scale behaviors of the solution are often identified using
asymptotic analysis and homogenization theory

Continuum of scales: A ∈ L∞

• Find local basis functions that capture the fine scale information,
and use them to identify the correct coarse scale behaviors of the
solution

• “Coarse scale” becomes a design choice in numerical approximation
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Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin’s method:
• Construct basis functions and plug them into the variational form
• Key: Quasi-optimality, i.e.,

Galerkin solution err ∼ optimal approx-err in ∥ · ∥H(Ω)

Challenges:
• Heterogeneity ⇒ u or ∇u is oscillatory

(!) approx-err of FEM can be arbitrarily bad [Babuška, Osborn 2000]

• High frequency ⇒ stability issues

e.g., ∥u∥H(Ω) ≤ Cstab(k)∥f∥L2(Ω) for Cstab(k) ⪰ 1 + kγ

(!) approx-err amplified by the stability constant
• quasi-optimality also deteriorates, e.g., require H = O(1/k2)
• phenomenon known as pollution effect [Babuška, Sauter, 1997]

(!) Need high accuracy approximation

H(Ω) is the energy norm
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How to Approximate A Function with High Accuracy?

When the function is smooth:

• Just choose polynomial basis functions for approximation

⇒ exponential convergence of accuracy

• e.g., hp-FEM for solving PDEs with smooth solutions
• provably handles pollution effects in Helmholtz’s equation

with p = O(log k) [Melenk, Sauter 2010, 2011]

If the function is non-smooth?
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Exponential Convergence for Approximating A-harmonic functions

Warm-up: A-harmonic functions

• Function space: assume 0 < Amin ≤ A(x) ≤ Amax <∞

U(D) := {v ∈ H1(D),−∇ · (A∇v) = 0 in D}/R

• Norm:
∥v∥H1

A(D) := ∥A1/2∇v∥L2(D)

Theorem [Babuška, Lipton 2011]

The singular values σm(R) of the restriction operator

R : (U(ω∗), ∥ · ∥H1
A(ω∗)) → (U(ω), ∥ · ∥H1

A(ω))

decays nearly exponentially fast:

σm(R) ≤ Cϵ exp
Ä
−m

1
d+1−ϵ

ä
for some Cϵ independent of H and m
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Approximating A-harmonic functions can be exponentially convergent

• For any u ∈ H1
A(ω

∗), there are m functions vj , 1 ≤ j ≤ m

∥u−
m∑
j=1

cjvj∥H1
A(ω) ≤ Cϵ exp

Ä
−m

1
d+1−ϵ

ä
∥u∥H1

A(ω∗)

• vj are left singular vectors of the restriction operator R

Summarize the property: Restrictions of A-harmonic functions
are of low approximation complexity
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuška, Lipton 2011], [Babuška, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

For elliptic equations with rough coefficients

−∇ · (A∇u) = f, in Ω, w/ boundary conditions

Decompose the solution to local components:

u =
∑
i

ηiu =
∑
i

ηiu
h
ωi

+
∑
i

ηiu
b
ωi

• Overlapped domain decomp.
ωi is of size O(H)

• Partition of unity functions∑
i ηi = 1, supp ηi = ωi, ηi

smooth
• Harmonic-bubble splitting®
−∇ · (A∇uhωi

) = 0, in ωi

uhωi
= u, on ∂ωi®

−∇ · (A∇ubωi
) = f, in ωi

ubωi
= 0, on ∂ωi
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i

ηiu
h
ωi

+
∑
i

ηiu
b
ωi

• ηiu
h
ωi

is a restriction of an A-harmonic function, so can be
approximated by basis functions with nearly exponential accuracy

⇒ u =
∑
i

m∑
k=1

ci,kvi,k︸ ︷︷ ︸
(I)

+O
Ä
exp
Ä
−m

1
d+1−ϵ

ä
∥u∥H1

A(Ω)

ä
+
∑
i

ηiu
b
ωi︸ ︷︷ ︸

(II)

Offline: for a given A, one constructs local basis functions
• Compute vi,k in (I) by solving local spectral problems

Online: given any source term f , one solves u
• Compute (II) by solving local equations
• Compute (I) by Galerkin’s method with offline basis functions

Note: Local problems are solved on a fine mesh h < H
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Our Contributions: New Local Structures and Global Coupling

Multiscale methods for Helmholtz’s equation
[Peterseim 2017], [Peterseim, Verfürth 2020], [Fu, Li, Craster, Guenneau 2021]

−∇ · (A∇u)− k2u = f, in Ω, w/ boundary conditions

• No pre-existing results on achieving exponential convergence
• Question: What is the structure of low approximation complexity?
• Difficulty: Indefiniteness of the operator

Non-overlapped domain decomposition [Hou, Wu 1997], [Hou, Liu 2015]

• Advantage: More localized
domains, local functions less
overlapped (more efficient in
stiffness matrix assembly)

• Difficulty: Non-overlapping,
interaction through edges
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Helmholtz-harmonic functions

• Function space:

Uk(D) := {v ∈ H1(D),−∇ · (A∇v)− k2v = 0 in D}/R

• Energy norm:

∥v∥2H(D) := ∥A1/2∇v∥2L2(D) + ∥kv∥2L2(D)

Theorem [Chen, Hou, Wang 2021], [Ma, Alber, Scheichl 2021]

Let H⋆ = O(1/k), then singular values σm(R) of the
restriction operator for Helmholtz-harmonic functions

R : (Uk(ω
∗), ∥ · ∥H(ω∗)) → (Uk(ω), ∥ · ∥H(ω))

decays nearly exponentially fast:

σm(R) ≤ Cϵ exp
Ä
−m

1
d+1−ϵ

ä
for some Cϵ independent of k,H and m

Key: H⋆ = O(1/k) ⇒ the Helmholtz operator is locally positive definite
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Non-overlapped Domain Decomposition: Localization and Coupling

1. Decomposition using indicator funcs

u =
∑
i

1Tiu =
∑
i

1Tiu
h
Ti
+
∑
i

1Tiu
b
Ti︸ ︷︷ ︸

locally computable

2. Focus on edge functions∑
i

1Ti
uhTi

= Qũh ∈ H1/2(EH)

• where Q : H1/2(EH) → H1(Ω) is
the Helmholtz-harmonic extension
operator
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Non-overlapped Domain Decomposition: Localization and Coupling

3. Edge localization

ũh = IH ũ
h︸ ︷︷ ︸

Nodal interp.

+ (ũh − IH ũ
h)︸ ︷︷ ︸

Decoupled to each edges

• IH ũ
h =

∑
n u(xn)ψn spanned by

nodal basis funcs

4. Oversampling for exp. accuracy

(ũh − IH ũ
h)|e

=
m∑
j=1

cj,eṽj,e +O
Ä
exp
Ä
−m

1
d+1−ϵ

ää
+ (ubωe

− IHu
b
ωe
)|e︸ ︷︷ ︸

small and locally computable
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h︸ ︷︷ ︸

Nodal interp.
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(ũh − IH ũ
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cj,eṽj,e +O
Ä
exp
Ä
−m

1
d+1−ϵ

ää
+ (ubωe

− IHu
b
ωe
)|e︸ ︷︷ ︸

small and locally computable



17/20

Exponentially Convergent Multiscale Finite Element Method

Theorem [Chen, Hou, Wang 2021]

The following holds for the solution u of Helmholtz’s equation

u =

Ñ∑
n

bnψn +
∑
e

m∑
j=1

cj,evj,e

é
+

(∑
i

1Tiu
b
Ti

+
∑
e

Q(ubωe
− IHu

b
ωe
)|e

)
+O
Ä
exp
Ä
−m

1
d+1−ϵ

ä
(∥u∥H(Ω) + ∥f∥L2(Ω))

ä
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Numerical Experiments: Helmholtz’s Equation

The problem set-up
• equation

−∇ · (A∇u) + V u = f, in Ω = [0, 1]2

• boundary condition: mixed (Dirichlet + Neumann + Robin)
• A(x) = |ξ(x)|+ 0.5 where ξ(x) is piecewise linear functions with

values as unit Gaussians r.v.; piecewise scale: 2−7

• −V/k2 draws from the same random field; k = 25

• f(x1, x2) = x41 − x32 + 1



19/20

Visualization of the Field
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Numerical Experiments: Helmholtz’s Equation

The mesh
• quadrilateral mesh
• fine mesh size h = 2−10, coarse mesh size H = 2−5

The accuracy of ExpMsFEM’s solution compared to fine mesh solution
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Figure: Numerical results for the mixed boundary and rough field example. Left:
eH versus m; right: eL2 versus m. Number of basis functions (2m+ 1)/H2
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