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Multiscale Problems: Heterogeneous Media and High Frequency Waves

Figure: Heterogeneity and high frequency
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Mathematical Setup
Model problem:

-V (AVu) +Vu=f, in Q, w/ boundary conditions

(subsurface flows, diffusions, elasticity, waves)
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Mathematical Setup

Model problem:
-V - (AVu) +Vu = f, in Q, w/ boundary conditions

(subsurface flows, diffusions, elasticity, waves)

Mathematical conditions:

® Heterogeneity:
AV e L*(Q), and 0 < Apin < A(z) < Apax < 00
e High frequency:

e.g., V = —k? (Helmholtz's equation)
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The Challenges in Numerical Approximation
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Literature: Scale Separation v.s. Continuum of Scales

Explicit scale parameter e: A = A(x,x/¢)
® Theory: with scale separation and periodicity assumptions
= there is a homogenized Ay = Ag(x) when € — 0

® Coarse scale behaviors of the solution are often identified using
asymptotic analysis and homogenization theory
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Literature: Scale Separation v.s. Continuum of Scales

Explicit scale parameter e: A = A(x,x/¢)

® Theory: with scale separation and periodicity assumptions
= there is a homogenized Ay = Ag(x) when € — 0

® Coarse scale behaviors of the solution are often identified using
asymptotic analysis and homogenization theory

Continuum of scales: A € L*®

® Find local basis functions that capture the fine scale information,
and use them to identify the correct coarse scale behaviors of the
solution

® “Coarse scale” becomes a design choice in numerical approximation
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Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:
e Construct basis functions and plug them into the variational form
e Key: Quasi-optimality, i.e.,
Galerkin solution err ~ optimal approx-err in || - ||l

H(Q) is the energy norm 7/20
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Galerkin solution err ~ optimal approx-err in || - ||l

Challenges:

® Heterogeneity = u or Vu is oscillatory
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Numerical Approximation for Multiscale PDEs with Continuum Scales

Galerkin's method:
e Construct basis functions and plug them into the variational form
e Key: Quasi-optimality, i.e.,
Galerkin solution err ~ optimal approx-err in || - ||l

Challenges:

® Heterogeneity = u or Vu is oscillatory
(1) approx-err of FEM can be arbitrarily bad [Babuska, Osborn 2000]

® High frequency = stability issues
e.g. [[ullr(e) < Cstab(k)||fllr2(0) for Cstab(k) = 1+ k7

(1) approx-err amplified by the stability constant
® quasi-optimality also deteriorates, e.g., require H = O(1/k?)
® phenomenon known as pollution effect [Babuska, Sauter, 1997]

(") Need high accuracy approximation )

H(Q) is the energy norm 7/20
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The Methodology of Exponential Convergence
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How to Approximate A Function with High Accuracy?

When the function is smooth:
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How to Approximate A Function with High Accuracy?

When the function is smooth:
e Just choose polynomial basis functions for approximation
= exponential convergence of accuracy

® e.g., hp-FEM for solving PDEs with smooth solutions

® provably handles pollution effects in Helmholtz's equation
with p = O(log k) [Melenk, Sauter 2010, 2011]
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How to Approximate A Function with High Accuracy?

When the function is smooth:
e Just choose polynomial basis functions for approximation
= exponential convergence of accuracy

® e.g., hp-FEM for solving PDEs with smooth solutions

® provably handles pollution effects in Helmholtz's equation
with p = O(log k) [Melenk, Sauter 2010, 2011]

If the function is non-smooth?
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Exponential Convergence for Approximating A-harmonic functions

Warm-up: A-harmonic functions
® Function space: assume 0 < Apin < A(2) < Apax < 00
U(D):={ve HY(D),~V - (AVv) = 0in D}/R

® Norm:
||U||H}4(D) = ||A1/2VUHL2(D)
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Exponential Convergence for Approximating A-harmonic functions
Warm-up: A-harmonic functions
® Function space: assume 0 < Apin < A(2) < Apax < 00
U(D):={ve HY(D),~V - (AVv) = 0in D}/R
® Norm:

||U||H}4(D) = ||A1/2VUHL2(D)

Theorem [Babuska, Lipton 2011]

The singular values o,,,(R) of the restriction operator e

R (U@ - ey o)) = (U@ [ @) i

decays nearly exponentially fast:

Um(R) S Ce exp(_mﬁie)

for some C. independent of H and m
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Approximating A-harmonic functions can be exponentially convergent

® For any u € H}(w*), there are m functions v;,1 < j <m
m
1
e =" 05l () < Ceexp(—m@T =) [Jull 1, (o)
j=1

® v; are left singular vectors of the restriction operator R
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Approximating A-harmonic functions can be exponentially convergent

® For any u € H}(w*), there are m functions v;,1 < j <m
m
1 _
e =" 05l () < Ceexp(—m@T =) [Jull 1, (o)
=1
® v; are left singular vectors of the restriction operator R

Summarize the property: Restrictions of A-harmonic functions

are of low approximation complexity
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuska, Lipton 2011], [Babuska, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

For elliptic equations with rough coefficients

-V - (AVu) = f, in Q, w/ boundary conditions
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuska, Lipton 2011], [Babuska, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

For elliptic equations with rough coefficients
-V - (AVu) = f, in Q, w/ boundary conditions

Decompose the solution to local components:

u= Z nu = ZmUB + Zniuzi

® Overlapped domain decomp. e Partition of unity functions
w; is of size O(H) d>oimi=1,supp n; = w;, n;
smooth

® Harmonic-bubble splitting
{—V- (AVy,) =0, inw

h

Uy,

. =u, on Jw;

{—V- (AVUEJZ,) =f, inw

b
ug,, =0, on Jdw;
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)
[Babuska, Lipton 2011], [Babuska, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

u= Z iU = Zmufl + Z 77%‘“21-

° mugi is a restriction of an A-harmonic function, so can be
approximated by basis functions with nearly exponential accuracy
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)

[Babuska, Lipton 2011], [Babuska, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

u= Z iU = Zmuﬁ + Z 77%‘“21-

° mugi is a restriction of an A-harmonic function, so can be
approximated by basis functions with nearly exponential accuracy

m
=u= Z Z ¢i kUi g +0 (exp<—mﬁ‘€> HUHHQ(Q)) + Z muzi
i

i k=1
——
O] (m
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Multiscale Spectral Generalized Finite Element Method (MS-GFEM)

[Babuska, Lipton 2011], [Babuska, Lipton, Sinz, Stuebner 2020], [Ma, Scheichl, Dodwell 2021]

u= Z iU = Z 771“2; + Z 77%‘“511-
i i i

° mu';i is a restriction of an A-harmonic function, so can be
approximated by basis functions with nearly exponential accuracy

m
=u= Z Zci7kvi7k +0 <cxp<—mﬁ*°) H“”Hi‘(m) + Zmuzi
i

i k=1
——
O] (m

Offline: for a given A, one constructs local basis functions
e Compute v; j in (1) by solving local spectral problems
Online: given any source term f, one solves u
e Compute (Il) by solving local equations
® Compute (I) by Galerkin's method with offline basis functions

Note: Local problems are solved on a fine mesh h < H
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Outline

Our Contributions: Helmholtz's Equation and Nonoverlapping
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Our Contributions: New Local Structures and Global Coupling

Multiscale methods for Helmholtz's equation
[Peterseim 2017], [Peterseim, Verfiirth 2020], [Fu, Li, Craster, Guenneau 2021]

—V - (AVu) — k*u = f, in Q, w/ boundary conditions
® No pre-existing results on achieving exponential convergence

® Question: What is the structure of low approximation complexity?

e Difficulty: Indefiniteness of the operator
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Helmholtz-harmonic functions

® Function space:
Ur(D) := {v e HY(D),-V - (AVv) — k*v =0 in D}/R
® Energy norm:

HU”?{(D) = ||A1/2V”||2L2(D) + ||k’U||2L2(D)
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Helmholtz-harmonic functions

® Function space:
Ui(D) :={v e H'(D),-V - (AVv) — k*v =0 in D}/R
® Energy norm:
HU”%{(D) = ||A1/2V”||%2(D) + ||k’U||2L2(D)

Theorem [Chen, Hou, Wang 2021], [Ma, Alber, Scheichl 2021]

Let H* = O(1/k), then singular values o, (R) of the
restriction operator for Helmholtz-harmonic functions H*

R (Up (W), [ - lagwm)) = Uk(@), [ - 13())

decays nearly exponentially fast:

O'm(R) < C. exp<_mﬁ—e)

for some C. independent of k, H and m

V.

Key: H* = O(1/k) = the Helmholtz operator is locally positive definite
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Our Contributions: New Local Structures and Global Coupling

Non-overlapped domain decomposition [Hou, Wu 1997], [Hou, Liu 2015]

® Advantage: More localized

domains, local functions less

o |

; overlapped (more efficient in
stiffness matrix assembly)

r e Difficulty: Non-overlapping,

F interaction through edges
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Non-overlapped Domain Decomposition: Localization and Coupling

1. Decomposition using indicator funcs

u = Z ]lTiu = Z ]lTiu?pi—i— Z ]lTqu_’pi .
[ 7 i

locally computable
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Non-overlapped Domain Decomposition: Localization and Coupling

1. Decomposition using indicator funcs :
[RE? S ',-,_T__
h :
U = E 1ru= E LIp,up, + E ]lTqu_’pi L -:,-,-1,_.'
i i i i

locally computable

2. Focus on edge functions

> lguf, = Qi € H'?(Ep)

® where Q: HY?(Ey) — H(Q) is
the Helmholtz-harmonic extension
operator
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Non-overlapped Domain Decomposition: Localization and Coupling

3. Edge localization
"= Iga" +  (@" - Igah)
~—~— ——

Nodal interp.  Decoupled to each edges

° Iya" =3, u(x,), spanned by
nodal basis funcs
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Non-overlapped Domain Decomposition: Localization and Coupling

3. Edge localization
"= Iga" +  (@" - Igah)
~—— N———

Nodal interp.  Decoupled to each edges

° Iya" =3, u(x,), spanned by
nodal basis funcs

4. Oversampling for exp. accuracy

(@ — Iga")|. L
= i Cjelje + O (eXp( —mﬁll_e»
j=1 We

+ (uze — IHUZe)le
—_— —m—

small and locally computable
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Exponentially Convergent Multiscale Finite Element Method

Theorem [Chen, Hou, Wang 2021]

The following holds for the solution u of Helmholtz's equation

anwn""zzcjevje

@ g=1

+ (Z Lruf, + > Q(uf, — IHu26)|e>

+0 (exp(—mT ) ([|ullay) + I /l2(@))
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Numerical Experiments: Helmholtz's Equation

The problem set-up

® equation
~V - (AVu) +Vu = f, in Q =[0,1)?

boundary condition: mixed (Dirichlet + Neumann + Robin)

A(x) = |€(z)| + 0.5 where £(x) is piecewise linear functions with
values as unit Gaussians r.v.; piecewise scale: 277

—V/k? draws from the same random field; k = 2°

fxy,20) =2t — a3 +1
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Visualization of the Field

w

M

—
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Numerical Experiments: Helmholtz's Equation

The mesh
® quadrilateral mesh
e fine mesh size h = 2719, coarse mesh size H = 27°

The accuracy of ExpMsFEM'’s solution compared to fine mesh solution

10° 10°
5 102
5 10° 5
3 5}
= o~
2 -,
w 10"

104

10°®
1 2 3 4 5 6 7 1 2 3 4 5 6 7
m

Figure: Numerical results for the mixed boundary and rough field example. Left:
ew versus m; right: ey 2 versus m. Number of basis functions (2m + 1)/H?
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