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Overview

goal: an approximate global solution for non-convex optimization
approach: run an existing algorithm, inspect its limit

for high-dimensional problems, introduce new block-wise methods to

reduce inspection costs

guarantee: global bounds for convex+"“nice nonconvex” objective
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Inspection step

= Run an algorithm till its near convergence
= Inspect the R-radius of latest x*, looking for a sufficient descent point by
sampling
= If found, then resume your algorithm from the point;
= otherwise, x* must be an approx R-local minimizer.

= We will develop a global bound for an approx R-local minimizer
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Block coordinate inspection in high dimensions

curse of dim: #sample-points is exponential in dimension
solution: decompose to blocks of small dimensions

Run a (block) coordinate algorithm, inspection each block;
#sample-points grows linearly in #blocks

updated guarantee: global bounds worsens only linearly in #blocks
Avoided the curse of dimensionality!



2D numerical experiment
Rugged landscape

F(x,y) = —20exp (—0.04(z> + 3°))—exp (0.7(sin(zy) + siny) + 0.2sin(z?))+20
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Black line represents the gradient descent step
Blue line represents the inspection step

Iteration trace
Left : Gradient descent(stepsize=1/40) + Global search, R =1
Right : Block gradient descent(stepsize=1/40) + Blockwise search, R = (1,1)
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R-local minimizer

definition: X is an R-local minimizer of function F' if

F(x) = xer}gl(iQR) F(x)

= R=00 = X is a global minimizer
= R > 0 exists = X a local minimizer

= For a fixed R > 0, R-local is between global and local



R-local is global: 1D example

2

F(z) = % + asin (bﬂ'(m - %)) +a, wherea=0.3, b=3

if R > 2y/a, then 0 is the only R-local minimizer



2D example: Ackley’s function

F(I,y) _ _206—()‘2\/0‘5(:62-‘(-1/2) _ eO.5(cos 2max+cos 27y) +e+20

often used to evaluate evolutionary algorithms

for suff. large R, (0,0) is the only R-local minimizer



Theory of (approximate) R-local minimizer

assumptions:
F(x) = f(x) +r(x)

(decomposition is only needed for theoretical analysis)

= f is differentiable and V f is L-Lipschitz continuous

= ris “nice”: exist a, 8 > 0 such that

Ir(x) —r(y)| < allx -yl +28, Vx,y



IV f|| bounds at an (approximate) R-local minimizer:

= |f X is an R-local minimizer of F', then
_ 48
I/ ()] < @+ max{ %, 2/BL}

When R > 2@ the bound will not improve
= If F(X) < mingep(x,r) F(x) + 7, then

IV < o max( 52 /a5 + 20)L)




Previous slide establishes ||V f(X)|| < ¢

Now, assume the Polyak-tojasoewicz inequality (slightly weaker than strong

convexity)
IV 2 i (F00) — £7), v
Example satisfying this inequality:
= Strongly convex

= Strongly convex composed with linear f(x) = g(Ax)

Fx) = 3l Ax ~ b

f(x) = Zlog(l + exp(bia; x)) in compact region
i=1



Global optimality bounds

Under above assumptions

» |If =0, then
62
FX)—-F"<—+2
(%) <5, 128
= If @ > 0 and any global minimizer x,y of f satisfy ||x —y|| < M then

d(x,sol set) < 2/76—1— M

2
F(x)fF*§M+aM+26



Obtaining an approximate R-local minimizer

= Suppose a descent algorithm (nearly) converges at x*
= Inspection samples points y*, y%, ...,yfnk € B(x", R):
= on coarse to finer grids, or
= uniformly at random, or

= nonuniformly according to function properties, or
= by MCMC or Gibbs

= hit and run: once finding a point that decreases objective by > §, resume

the algorithm there; otherwise, return x*



Inspection guarantee

= assume:
= sample in B(X, R) at density! r
= function F(z) L-Lipschitz in B(X, R)

= If no sample is found to improve F' by ¢, then

F(X)< min F(x)+ (Lr+94),

~ x€B(z,R)

that is, X is an R-local minimizer up to Lr + &

YFor any x € B(X, R), there exists a sampled point y such that ||x — y| < r



Partial summary

Abstract algorithm:

= Run an existing descent algorithm to x* with prescribed precision
= Inspect samples in B(x*, R)

= if 5-descent is found, resume the algorithm there
= otherwise, stop and return xk

The algorithm stops finitely with an approximate R-local minimizer.

If the objective is convex+“nice nonconvx”, then nearly globally optimal.
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Blockwise version

X has s blocks
Let F(x;,X_;) denotes F(Z1, ..., x;, ..., Ts) as a function of z;

X is a blockwise R-local minimizer of I if

F(i’i,)_ifi) = min F(l‘i,)_(fi) Vl S 7 S S
z;, €B(Z;,R;)

When R = oo, X is a Nash equilibrium point

(Under the same assumptions) bounded gradient

1970l < V5 (a+ max{ 2 2\ /BT})



Blockwise inspection

= If the descent method in use is a global method,
then inspect block by block
= |f the descent method in use is a block coordinate descent method,

then integrate inspection into each block



Useful R-local-min variants

select R,y >0

= X is a R-local prox minimizer of F if

F(x)= min P+ 3lx -7,

When R = o it is called a prox minimizer

= Suppose F' = Fy + Fy;
X is a R-local prox-linear minimizer of F' = F} + F5 if
F(®) = min (VF(X),x— %)+ %Hx — x| + Fa(x).

x€B(x,R)

When R = oo it is called a prox-linear minimizer
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Blockwise version:
select R = (y1,...,7s) > 0

= X is a blockwise R-local prox minimizer of F' if

F(rox-i)=  min  F(oiX-)+ %Hzi — &P, VI<i<s

= Suppose F' = I} + Fy;

X is a blockwise R-local prox-linear minimizer of F' if for 1 <i <'s

F(Z;,x) = Iieggl}ﬁl)(vz‘Fl(fi, X-i), xi_fi>+% |2 =2 ||* + Fa(zi, X—s)

o
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Blockwise updating rule

Each step choose a index i), to update; R* converges to R; v* converges to

1. Blockwise R-local minimization:

k41 . k
i € argmin  F(zg,,x25;,)
T EB(a:;“k ,Ri?k)

T

Greedy choice of index is needed when s > 2

2. Blockwise R-local prox minimization:

Ve
2

k+1
i

. k
€ argmin  F(zi,x%;, )+
Tiy EB(acfk ,Rfk)

_ k2
x ||:I:1k — Ly, H
Always have subsequence convergence

3. Blockwise R-local prox-linear minimization:

k+1
ik

k
. Vi
€ argmin (VFi(25, x5, ), 2o, =0, )+ 55 s, —at, P+ Fa(wi, x5,

zieB(sz ,Rfk)

Choose 'yfk to lead to a sufficient descent condition

N
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Application

= SCAD penalty; z e R,y >2,A>0

Alz| if |z] < A,
2 2
Pa~(T) = 2"’*‘;&%’1)_)‘ if A< |z| <A,
2
% if 2| > A

= Problem

min Qs (8) = gy = XBI + 3 pa (5.

N
N
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Compared to existing nonconvex results

= For a few applications, any local = global was recently discovered??

Our results are weaker yet more general

= Some algorithms search all the time
Our results only search when necessary

= Some recent results are probabilistic*®
Our results are deterministic (easier to apply)

2Ge, Huang, Jin, and Yuan [2015]

3Ge, Lee, and Ma [2016]

4Jin, Ge, Netrapalli, Kakade, and Jordan [2017]
5Ge, Huang, Jin, and Yuan [2015]



Example 1 Avoiding the saddle point

= Find a solution x satisfying6
[VEx)| <e and Amin(VEF(x)) > —\/pe

where p is the Lipschitz constant of V?F(x)

= Problems like tensor decomposition and matrix completion enjoy strict
saddle property and all local minimum is global minimum?®.

= Adding isotropic noise is able to find negative curvature direction with
high probability®°.

= Probabilistic and local; mainly theoretical use

SNesterov and Polyak [2006]

7 Ge, Huang, Jin, and Yuan [2015]

8Ge, Lee, and Ma [2016]

9Jin, Ge, Netrapalli, Kakade, and Jordan [2017]
10Ge, Huang, Jin, and Yuan [2015]



Example 2 Flat minima in deep neural network

= Fact : flat minima are likely to have low generalization error

= Algorithm : SGD are more likely to stop in a wide valley rather than a
sharp valley

= Recent Entropy-SGD!! is a PDE based smoothing technique!?, which can
make the smoothed landscape favor a flatter minima

= Their criteria of a flat minima is the behavior of eigenvalues of Hessian,
which is local

= A better non-local quantity is needed to go further®®.
Our R-local minimizer is an attempt to explore non-local property

uChaudhari, Choromanska, Soatto, and LeCun [2016]
12Chaudhari, Oberman, Osher, Soatto, and Carlier [2017]
1BWu, Zhu, et al. [2017]



High-level features of our methods

Many existing algorithms empirically work well; we add guarantees
Finite iteration steps guarantee (deterministic)

All sampling based method can be used in the inspection step

We only search when and where needed

An attempt to explore non-local properties
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