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Overview

• goal: an approximate global solution for non-convex optimization

• approach: run an existing algorithm, inspect its limit

• for high-dimensional problems, introduce new block-wise methods to
reduce inspection costs

• guarantee: global bounds for convex+“nice nonconvex” objective
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Inspection step

• Run an algorithm till its near convergence
• Inspect the R-radius of latest xk, looking for a sufficient descent point by

sampling
• If found, then resume your algorithm from the point;
• otherwise, xk must be an approx R-local minimizer.

• We will develop a global bound for an approx R-local minimizer
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Block coordinate inspection in high dimensions

• curse of dim: #sample-points is exponential in dimension

• solution: decompose to blocks of small dimensions

• Run a (block) coordinate algorithm, inspection each block;
#sample-points grows linearly in #blocks

• updated guarantee: global bounds worsens only linearly in #blocks
Avoided the curse of dimensionality!
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2D numerical experiment

Rugged landscape

F (x, y) = −20 exp (−0.04(x2 + y2))−exp (0.7(sin(xy) + sin y) + 0.2 sin(x2))+20

5 / 27



Black line represents the gradient descent step
Blue line represents the inspection step

Iteration trace
Left : Gradient descent(stepsize=1/40) + Global search, R = 1

Right : Block gradient descent(stepsize=1/40) + Blockwise search, R = (1, 1)
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R-local minimizer

definition: x̄ is an R-local minimizer of function F if

F (x̄) = min
x∈B(x̄,R)

F (x)

• R =∞ ⇒ x̄ is a global minimizer

• R > 0 exists ⇒ x̄ a local minimizer

• For a fixed R > 0, R-local is between global and local

7 / 27



R-local is global: 1D example

F (x) = x2

2 + a sin
(
bπ(x− 1

2b )
)

+ a, where a = 0.3, b = 3
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if R > 2
√
a, then 0 is the only R-local minimizer
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2D example: Ackley’s function

F (x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e+ 20

often used to evaluate evolutionary algorithms

for suff. large R, (0, 0) is the only R-local minimizer
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Theory of (approximate) R-local minimizer

assumptions:
F (x) = f(x) + r(x)

(decomposition is only needed for theoretical analysis)

• f is differentiable and ∇f is L-Lipschitz continuous

• r is “nice”: exist α, β ≥ 0 such that

|r(x)− r(y)| ≤ α‖x− y‖+ 2β, ∀x,y
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‖∇f‖ bounds at an (approximate) R-local minimizer:

• If x̄ is an R-local minimizer of F , then

‖∇f(x̄)‖ ≤ α+ max{4β
R
, 2
√
βL}

When R > 2
√

β
L

the bound will not improve

• If F (x̄) ≤ minx∈B(x̄,R) F (x) + η, then

‖∇f(x̄)‖ ≤ α+ max{4β + 2η
R

,
√

(4β + 2η)L}
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Previous slide establishes ‖∇f(x̄)‖ ≤ δ

Now, assume the Polyak- Lojasoewicz inequality (slightly weaker than strong
convexity)

1
2‖∇f(x)‖2 ≥ µ (f(x)− f∗) , ∀x

Example satisfying this inequality:

• Strongly convex

• Strongly convex composed with linear f(x) = g(Ax)

f(x) = 1
2‖Ax− b‖2

f(x) =
n∑
i=1

log(1 + exp(biaTi x)) in compact region
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Global optimality bounds

Under above assumptions

• If α = 0, then

F (x̄)− F ∗ ≤ δ2

2µ + 2β

• If α ≥ 0 and any global minimizer x,y of f satisfy ‖x− y‖ ≤M then

d(x̄, sol set) ≤ 2δ
µ

+M

F (x̄)− F ∗ ≤ δ2 + 2αδ
µ

+ αM + 2β
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Obtaining an approximate R-local minimizer

• Suppose a descent algorithm (nearly) converges at xk

• Inspection samples points yk1 ,yk2 , ...,ykmk ∈ B(xk, R):
• on coarse to finer grids, or
• uniformly at random, or
• nonuniformly according to function properties, or
• by MCMC or Gibbs

• hit and run: once finding a point that decreases objective by ≥ δ, resume
the algorithm there; otherwise, return xk
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Inspection guarantee

• assume:
• sample in B(x̄, R) at density1 r
• function F (x) L̄-Lipschitz in B(x̄, R)

• If no sample is found to improve F by δ, then

F (x̄) ≤ min
x∈B(x̄,R)

F (x) + (L̄r + δ),

that is, x̄ is an R-local minimizer up to L̄r + δ

1For any x ∈ B(x̄, R), there exists a sampled point y such that ‖x− y‖ ≤ r
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Partial summary

Abstract algorithm:

• Run an existing descent algorithm to xk with prescribed precision
• Inspect samples in B(xk, R)

• if δ-descent is found, resume the algorithm there
• otherwise, stop and return xk

The algorithm stops finitely with an approximate R-local minimizer.

If the objective is convex+“nice nonconvx”, then nearly globally optimal.
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Blockwise version

• x has s blocks

• Let F (xi, x̄−i) denotes F (x̄1, ..., xi, ..., x̄s) as a function of xi
x̄ is a blockwise R-local minimizer of F if

F (x̄i, x̄−i) = min
xi∈B(x̄i,Ri)

F (xi, x̄−i) ∀1 ≤ i ≤ s

• When R =∞, x̄ is a Nash equilibrium point

• (Under the same assumptions) bounded gradient

‖∇f(x̄)‖ ≤
√
s
(
α+ max{ 4β

miniRi
, 2
√
βL}

)
.
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Blockwise inspection

• If the descent method in use is a global method,
then inspect block by block

• If the descent method in use is a block coordinate descent method,
then integrate inspection into each block
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Useful R-local-min variants

select R, γ > 0

• x̄ is a R-local prox minimizer of F if

F (x̄) = min
x∈B(x̄,R)

F (x) + γ

2 ‖x− x̄‖2,

When R =∞ it is called a prox minimizer

• Suppose F = F1 + F2;
x̄ is a R-local prox-linear minimizer of F = F1 + F2 if

F (x̄) = min
x∈B(x̄,R)

〈∇F1(x̄),x− x̄〉+ γ

2 ‖x− x̄‖2 + F2(x).

When R =∞ it is called a prox-linear minimizer

19 / 27



Blockwise version:
select R = (γ1, ..., γs) > 0

• x̄ is a blockwise R-local prox minimizer of F if

F (x̄i, x̄−i) = min
xi∈B(x̄i,Ri)

F (xi, x̄−i) + γi
2 ‖xi − x̄i‖

2, ∀1 ≤ i ≤ s

• Suppose F = F1 + F2;
x̄ is a blockwise R-local prox-linear minimizer of F if for 1 ≤ i ≤ s

F (x̄i, x̄−i) = min
xi∈B(x̄i,Ri)

〈∇iF1(x̄i, x̄−i), xi−x̄i〉+
γ̂i
2 ‖xi−x̄i‖

2+F2(xi, x̄−i)
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Blockwise updating rule
Each step choose a index ik to update; Rk converges to R; γk converges to γ

1. Blockwise R-local minimization:

xk+1
ik
∈ arg min
xik
∈B(xk

ik
,Rk

ik
)
F (xik ,x

k
−ik )

Greedy choice of index is needed when s > 2

2. Blockwise R-local prox minimization:

xk+1
ik
∈ arg min
xik
∈B(xk

ik
,Rk

ik
)
F (xik ,x

k
−ik ) +

γkik
2 ‖xik − x

k
ik‖

2

Always have subsequence convergence

3. Blockwise R-local prox-linear minimization:

xk+1
ik
∈ arg min
xi∈B(xk

ik
,Rk

ik
)
〈∇F1(xkik ,x

k
−ik ), xik−x

k
ik 〉+

γkik
2 ‖xik−x

k
ik‖

2+F2(xik ,x
k
−ik )

Choose γkik to lead to a sufficient descent condition

21 / 27



Application

• SCAD penalty; x ∈ R, γ > 2, λ > 0

pλ,γ(x) =


λ|x| if |x| ≤ λ,
2γλ|x|−x2−λ2

2(γ−1) if λ < |x| < γλ,
λ2(γ+1)

2 if |x| ≥ γλ

• Problem

min
β
Qλ,γ(β) = 1

2‖y −Xβ‖
2 +
∑
i

pλ,γ(βi).
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Compared to existing nonconvex results

• For a few applications, any local = global was recently discovered23

Our results are weaker yet more general

• Some algorithms search all the time
Our results only search when necessary

• Some recent results are probabilistic45

Our results are deterministic (easier to apply)

2Ge, Huang, Jin, and Yuan [2015]
3Ge, Lee, and Ma [2016]
4Jin, Ge, Netrapalli, Kakade, and Jordan [2017]
5Ge, Huang, Jin, and Yuan [2015]
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Example 1 Avoiding the saddle point

• Find a solution x̄ satisfying6

‖∇F (x)‖ ≤ ε and λmin(∇2F (x)) ≥ −√ρε

where ρ is the Lipschitz constant of ∇2F (x)

• Problems like tensor decomposition and matrix completion enjoy strict
saddle property and all local minimum is global minimum78.

• Adding isotropic noise is able to find negative curvature direction with
high probability910.

• Probabilistic and local; mainly theoretical use

6Nesterov and Polyak [2006]
7Ge, Huang, Jin, and Yuan [2015]
8Ge, Lee, and Ma [2016]
9Jin, Ge, Netrapalli, Kakade, and Jordan [2017]

10Ge, Huang, Jin, and Yuan [2015]
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Example 2 Flat minima in deep neural network

• Fact : flat minima are likely to have low generalization error

• Algorithm : SGD are more likely to stop in a wide valley rather than a
sharp valley

• Recent Entropy-SGD11 is a PDE based smoothing technique12, which can
make the smoothed landscape favor a flatter minima

• Their criteria of a flat minima is the behavior of eigenvalues of Hessian,
which is local

• A better non-local quantity is needed to go further13.
Our R-local minimizer is an attempt to explore non-local property

11Chaudhari, Choromanska, Soatto, and LeCun [2016]
12Chaudhari, Oberman, Osher, Soatto, and Carlier [2017]
13Wu, Zhu, et al. [2017]
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High-level features of our methods

• Many existing algorithms empirically work well; we add guarantees

• Finite iteration steps guarantee (deterministic)

• All sampling based method can be used in the inspection step

• We only search when and where needed

• An attempt to explore non-local properties
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