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Gaussian Processes and Kernel Methods

Gaussian processes: ξ ∼ GP(0, k)

• Here k : Rd × Rd → R is a PSD kernel function
For X = {x1, ...,xN} ⊂ Rd, it holds

(ξ(x1), ..., ξ(xN )) ∼ N (0,Θ) where Θ = k(X,X) ∈ RN×N

• Widely used in scientific computing and machine learning

Computational challenge: dense kernel matrices Θ

• In PDE applications, e.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Derivatives may rise Θ =

Å
k(X,X) ∆yk(X,X)

∆xk(X,X) ∆x∆yk(X,X)

ã
Cubic bottleneck O(N3)
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Fast, Scalable Algorithms for Dense Kernel Matrices

Many approximate methods:
• Nyström approximation, inducing points, sparse GPs, random

features, covariance tapering, divide-and-conquer, structured
kernel interpolation, hierarchical matrices, wavelets based
methods, sparse Cholesky factorization ...

• Based on low-rank/sparse ideas and their multiscale variants

Goal: This talk will discuss two basic yet efficient algorithms

• Low rank approximation: randomly pivoted Cholesky
[Musco, Woodruff 2017], [Chen, Epperly, Tropp, Webber 2022], [Díaz, Epperly,

Frangella, Tropp, Webber 2023], [Epperly, Tropp, Webber 2024], etc.

• Full rank approximation: sparse Cholesky [Schäfer, Sullivan, Owhadi

2021], [Schäfer, Katzfuss, Owhadi 2021], [Chen, Owhadi, Schäfer 2023], etc.

We focus on a Gaussian process interpretation
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Outline

1 Part I: Low Rank Approximation

2 Part II: Full Rank Approximation
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Part I: Low Rank Approximation

With M column indices IM = {i1, i2, ..., iM}, we set

ΘMM = Θ[IM , IM ] and ΘNM = Θ[:, IM ]

• GP interpretation: Let Θ ∈ RN×N , X ∼ N (0,Θ)
Residue matrix Θ− LNMLT

NM = Cov[X|Xi1 , ..., XiM ]

(LNM )kk =
»

Cov[Xik |Xi1 , ..., Xik−1
]

• Small conditional variance ⇝ near low rank
Experimental design, active learning, column selections, etc.
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Let Θ ∈ RN×N , and X ∼ N (0,Θ)

Uniform selection
• Choose i1, i2, ..., iM uniformly random

Greedy selection
• Choose i1 = argmax1≤i≤N Cov[Xi]

• For 2 ≤ k ≤ M :

Choose ik = argmax1≤i≤N Cov[Xi|Xi1 , ..., Xik−1
]

Use variance uncertainties to guide the selection

Both selections can be made in arithmetic complexity O(NM2)

Uniform: [Williams, Seeger 2000], [Drineas and Mahoney 2005]
Greedy: Cholesky with complete pivoting [Higham 1990]
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Exploration and Exploitation – Failure Mode 1

• large uncertainties
• small uncertainties

• Uniform cannot exploit large uncertainties
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Exploration and Exploitation – Failure Mode 2

• large uncertainties
(isolated)

• small uncertainties
(clustered)

• Greedy may prioritize outliers, overlook predominant patterns
• Exploit large uncertainties too much without exploration of

small uncertainties
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Random Pivoting Balances Exploration and Exploitation

Random pivoting selection (RPCholesky)
• Sample i1 according to

pi ∝ Cov[Xi], 1 ≤ i ≤ N

• For 2 ≤ k ≤ M : sample ik according to

pi ∝ Cov[Xi|Xi1 , ..., Xik−1
], 1 ≤ i ≤ N

• Overcome the previous two failure modes
• Theorem: nearly optimal approximation guarantee

E tr
Ä
Θ− LNMLT

NM

ä
≤ (1 + ε) tr(Θ− [Θ]r)

provided M ≥ r
ε + r log

Ä
1
εη

ä
where η = tr(Θ−[Θ]r)

tr(Θ) and [Θ]r is
the best rank-r approximation of Θ

[Chen, Epperly, Tropp, Webber 2022]
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Figure: Clustering Alanine dipeptide trajectories: N = 2.5× 105 data
points in R30 using kernel spectral clustering with low rank approximation
of kernel matrices. For other numerical examples check the paper
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Outline

1 Part I: Low Rank Approximation

2 Part II: Full Rank Approximation
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Part II: Full Rank Approximation

When low rank approximation is not accurate enough
• In PDE applications, e.g., [Chen, Hosseni, Owhadi, Stuart 2021]

Θ =

Å
k(X,X) ∆yk(X,X)

∆xk(X,X) ∆x∆yk(X,X)

ã
∈ RN

arises when using GPs to solve −∆u+ u3 = f , etc.

• For k(X,X), one can order the columns from coarse to fine
scales for nearly optimal low rank approximations

• Spectrum of Θ can decay slowly for some Matérn kernels
⇝ full rank approximation needed
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Full Rank but Sparse Cholesky Factors?

Full Cholesky is not affordable. Is the factor approximately sparse?
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Cholesky Factors: GP Interpretation+

GP interpretation for off-diagonals

Let Θ ∈ RN×N , and X ∼ N (0,Θ)

• Lower-triangular Cholesky factor of Θ = LLT satisfies

Lij

Ljj
=

Cov[Xi, Xj |X1, ..., Xj−1]

Var[Xj |X1, ..., Xj−1]
(i ≥ j)

• Upper-triangular Cholesky factor of Θ−1 = UUT

Uij

Ujj
= (−1)i ̸=jCov[Xi, Xj |X1:j−1\{i}]

Var[Xj |X1:j−1\{i}]
(i ≤ j)

• Near conditional independence ⇝ near sparsity
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Screening Effects and Sparsity

“The screening effect is the geostatistical term for the phenomenon
of nearby observations tending to reduce the influence of more
distant observations when using kriging (optimal linear prediction)
for spatial interpolation” [Stein 2002]
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• Max-min ordering: coarse-to-fine through

xk = argmaxxi
dist(xi, {xj , 1 ≤ j < k})

with its length scale lk := dist(xk, {xj , 1 ≤ j < k})

• Under the assumption that k is the Green function of certain
differential operators L : Hs

0(Ω) → H−s(Ω), it holds

Cov[ξ(xi), ξ(xj)|ξ(x1:k)] ≤ Clαk exp

Å
−dist(xi,xj)

Clk

ã
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021]

PDE tools: [Målqvist, Peterseim 2014], [Owhadi 2015], [Owhadi, Scovel 2017]
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For Kernel Matrices Arising from PDEs

Theorem: Let the permutation matrix P order pointwise entries
first using max-min ordering, followed by an arbitrary order of
derivative entries. Let P TΘ−1P = U⋆U⋆T . Then under certain
regularity assumption on k, it holds that

|U⋆
ij | ≤ Clβj exp

Ç
−
dist(xP (i),xP (j))

Clj

å
, 1 ≤ i ≤ j ≤ N

Here xP (i) is the point corresponding to the ith ordered entry
[Chen, Owhadi, Schäfer 2023]
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Computing Sparse Factors with Near Linear Complexity

Sparsity pattern: entries are exponentially small outside

Sl,ρ ={1 ≤ i ≤ j ≤ N : dist(xP (i),xP (j)) ≤ ρlj}
={1 ≤ i ≤ j ≤ N : i ∈ sj} #sj = O(ρd)

Algorithm: Given the sparsity pattern, using KL optimization to
extract an optimal sparse factor Uρ

• Let Sl,ρ = {A ∈ RN×N : Aij ̸= 0 ⇒ (i, j) ∈ Sl,ρ}

Uρ = argminU∈Sl,ρ
KL
Ä
N (0, PΘP T ) ∥ N (0, (UUT )−1)

ä

• Explicit solution: Usj ,j =
Θ−1

sj ,sj
e#sj√

eT#sj
Θ−1

sj ,sj
e#sj

• Can be implemented O(Nρd) in space and O(Nρ2d) time

• Theory: ρ = O(log(N/ϵ)) ⇒ ∥P TΘ−1P − Uρ(Uρ)T ∥Fro ≤ ϵ

[Vecchia 1988], [Marzouk et al. 2016], [Schäfer, Katzfuss, Owhadi 2021]
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Experiments using Sparse Chokesky for Solving PDEs

• 2D Example: nonlinear elliptic equation with τ(u) = u3

−∆u+ τ(u) = f w/ Dirichlet’s boundary condition

• Ω = [0, 1]2. Collocation points uniformly distributed
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Figure: Run 3 linearization steps with initialization as a zero function.
Accuracy floor due to finite ρ = 4.0

See other examples of Burgers, Monge-Ampère in the paper
[Chen, Hosseni, Owhadi, Stuart 2021], [Chen, Owhadi, Schäfer 2023]
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Summary

Cholesky for GPs in scientific computing and machine learning

• Low rank approximation with random pivoting: balance
exploration and exploitation [Musco, Woodruff 2017], [Chen, Epperly,

Tropp, Webber 2022], [Díaz, Epperly, Frangella, Tropp, Webber 2023], [Dong,

Chen, Martinsson, Pearce 2023], [Steinerberger 2024], [Epperly, Tropp, Webber

2024], etc.

• Full rank approximation with coarse to fine ordering: sparsity
due to screening effects applicable also to kernel derivatives
[Schäfer, Sullivan, Owhadi 2021], [Schäfer, Katzfuss, Owhadi 2021], [Chen,

Owhadi, Schäfer 2023], [Huan et al. 2023], etc.

Interpretation of Cholesky as conditioning of GPs provides insights

• Small conditional variance ⇝ near low rank
• Near conditional independence ⇝ near sparsity
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