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Context

The sampling problem

Goal: draw (approximate) samples from

p*(0) o exp(=V(0))

Set-up: V() available, versus samples in generative modeling

Many applications in y = G(8) + noise

e Statistical physics Data
e Bayes inverse problems / \

*(0) = os 0 0 rior 0

P7(0) = ppost(8) o p(y1)rprior(8) - RS
. R

) G(6)
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One Particular Motivation: Climate Science

Next generation earth system model

Observations

phere '
LU, xo™

ec"'l‘a:'nu,r Quantific®

Targeted High-Resolution Simulations
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Challenges

Bayes inverse problem under Gaussian priors and noises:

Ppost(g) X P(y|e)/0prior(0) X exp(—<I>R(9,y))
1, -1 1. 1
where ®(0,1) = 25 (y = GO)I? + 21552 (0 o)

Evaluating G is expensive: require large scale PDE solvers
Posterior distribution ppost(6) can have multiple modes

Gradient of @ may not available or even feasible
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Challenges

Bayes inverse problem under Gaussian priors and noises:

Ppost(e) X P(y|‘9)/0prior(0) X exp(—q)R(H,y))
1, -1 1. 1
where ®(0,1) = 25 (y = GO)I? + 21552 (0 o)

Evaluating G is expensive: require large scale PDE solvers
Posterior distribution ppost(6) can have multiple modes

Gradient of @ may not available or even feasible

Ask for fast, multimodal, and derivative-free Bayes sampler
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Typical Sampling Approaches

Common structures of many sampling algorithms
Design a dynamics of p; converging to (approximate) ppost

Develop a “numerical scheme” that implements the dynamics
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Typical Sampling Approaches

Common structures of many sampling algorithms
Design a dynamics of p; converging to (approximate) ppost

Develop a “numerical scheme” that implements the dynamics

¢ Sequential Monte Carlo (SMC)
® Finite time dynamics such as p; o pp ! oL
® E.g., implemented via importance sampling or ensembles

¢ Markov Chain Monte Carlo (MCMC)
® Infinite time dynamics with pos = ppost
® E.g., implemented via Markov chains or ensembles

¢ Variational inference (VI), Kalman filter, ...

® Dynamics in a parametric family of distributions p; € Py
® E.g., implemented via update of parameters or ensembles

MCMC: [Brooks, Galin, Jones, Meng, 2011], ...
SMC: [Del Moral, Doucet, Jasra, 2006], ...

Variational inference: [Mackay 2008], [Wainright, Jordan 2008], ... 6/33



Towards Fast, Multimodal, Derivative-Free Sampler?

Common structures of many sampling algorithms
Design a dynamics of p; converging to (approximate) ppost

Develop a “numerical scheme” that implements the dynamics

e Dynamics of p; needs to converge fast

® Typical MCMC needs O(10*) runs
® Many dynamics converges slowly in the case of multiple modes

® Dynamics amenable to derivative free numerical approximation

® Small number of forward map evaluations in each iteration
® Vanilla SMC may suffer from weight collapse
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Towards Fast, Multimodal, Derivative-Free Sampler?

Common structures of many sampling algorithms
Design a dynamics of p; converging to (approximate) ppost

Develop a “numerical scheme” that implements the dynamics

e Dynamics of p; needs to converge fast

® Typical MCMC needs O(10*) runs
® Many dynamics converges slowly in the case of multiple modes

® Dynamics amenable to derivative free numerical approximation

® Small number of forward map evaluations in each iteration
® Vanilla SMC may suffer from weight collapse

Our proposal of algorithms
Fisher-Rao gradient flow w/ Gaussian mixture + Kalman approx.J
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Towards Fast, Multimodal, Derivative-Free Sampler

Fisher-Rao Gradient Flow for Efficiency
Gaussian Mixture + Kalman for Multimodal and Derivative-Free
Theoretical Insights

Numerical Demonstrations
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Towards Efficient, Multimodal, Derivative-Free Sampler

Fisher-Rao Gradient Flow for Efficiency
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Fisher-Rao Gradient Flow
Fisher-Rao gradient flow of KL divergence

0
% = Pt (log Ppost — log pt) — piEp, [log Ppost — log pi]
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Fisher-Rao Gradient Flow
Fisher-Rao gradient flow of KL divergence

0
% = pt(10g ppost — 10g pr) — pilEp,[10g ppost — log pi]

e KL divergence

5(p)=KL[pprost]=/p10g( : )dH

Ppost

® Fisher-Rao metric tensor
M(p)~™" = p(¢p — E,[¢)])

¢ The gradient flow equation

op _10& _
a—tt = —M(pt) 1$‘p:pt = _M(Pt) 1(log pt — log Ppost)

Information geometry [Amari 2016], [Ay, Jost, L&, Schwachhéfer, 2017]
See also: Wasserstein gradient flow, Stein variational gradient flow, ... 0/33



Properties of Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

0
£ = Pt (log Ppost — IOg pt) - ptEpt [log Ppost — 10g Pt]

Property (1): Apply any diffeomorphism ¢ : R% — R%
® py = p#p; is the transformed distribution at time ¢
® Dpost = PFPpost is the transformed target distribution

Then, the form of the flow equation remains invariant
op _ _ ~ _ N -
£ = t(log Ppost — log pt) — peEs, [log Ppost — log pt]
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Properties of Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

0
£ = py (log Ppost — log pt) — ptp, [log ppost — log pi]

Property (1): Apply any diffeomorphism ¢ : R% — R%

® py = p#p; is the transformed distribution at time ¢

® Dpost = PFPpost is the transformed target distribution
Then, the form of the flow equation remains invariant

ap _ _ N _ - .

% = t(log Ppost — lOg pt) - PtEﬁt [log Ppost — 10g Pt]
Note: Invariance is useful for fast convergence of dynamics

® Affine invariant MCMC [Goodman, Weare 2010]

® Preconditioned Langevin, Kalman-Wasserstein gradient flow

[Reich Cotter 2015], [Leimkuhler, Matthews, Weare 2018], [Garbuno-Inigo,
Hoffmann, Li, Stuart 2020]
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Convergence of Fisher-Rao gradient flows of KL divergence
[Chen, Huang, Huang, Reich, Stuart 2023]

Let p; satisfy the Fisher-Rao gradient flow. Assume
® there exist constants K, B > 0 such that pg satisfies

e KOHIOP) < 10(6)/ ppost (8) < AHOP)

® the second moments of pg, ppost are both bounded by B

Then, for any t > log((l + B)K)

KL{pil|ppost] < (2+ B + eB)Ke™

See also: [Lu, Slepcev, Wang 2022], [Domingo-Enrich, Pooladian 2023]
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Convergence of Fisher-Rao gradient flows of KL divergence
[Chen, Huang, Huang, Reich, Stuart 2023]

Let p; satisfy the Fisher-Rao gradient flow. Assume
® there exist constants K, B > 0 such that pg satisfies

e KAHOP) < p0(6)/ ppost(0) < eKAFOF)

® the second moments of pg, ppost are both bounded by B

Then, for any t > log((l + B)K)

KL{pil|ppost] < (2+ B + eB)Ke™

See also: [Lu, Slepcev, Wang 2022], [Domingo-Enrich, Pooladian 2023]
“Unconditional” uniform exponential convergence

® |n sharp contrast to Wasserstein gradient flows and Langvin
dynamics whose convergence rates depend on ppost (€.8.,
log-concavity, or log-Sobolev constants)
[Jordan, Kinderlehrer, Otto 1998], [Villani 2003, 2008], ...
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Properties of Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

Opt

E = Pt (10g Ppost — lOg pt) - ptEpt [lOg Ppost — IOg Pt]

Property (2): independent of the normalization consts of ppost

e Useful for the numerical implementation of the dynamics

® No need to worry about the approximation of the
normalization constant
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Properties (1) (2) Are Special

Unique property of Fisher-Rao metric
[Cencov 2000], [Ay, Jost, L&, Schwachhdfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the only Riemannian metric on smooth
positive densities (up to scaling) that is invariant under any
diffeomorphism of the parameter space

Unique property of KL divergence
[Chen, Huang, Huang, Reich, Stuart 2023]

Among all f-divergence with continuously differentiable f, KL
divergence is the only one, up to scaling, whose induced gradient
flow under any metric is invariant to the normalization consts of

ppost

Fisher-Rao gradient flow is special in the context of sampling
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Exploration-Exploitation Scheme for Fisher-Rao GFs

Continuous Fisher-Rao gradient flow of KL divergence

0
% = Pt (IOg Ppost — log pt) - ptEpt [log Ppost — log pt]

Discrete scheme via operator splitting
Pry1(6) o pr(6)=2  (exploration)
Prt1(0) o ﬁn+1(9)ppost(9)At (exploitation)

Exploration steps connected to tempering/annealing

Fixed point interpretation [Huang, Huang, Reich, Stuart 2022]

Mirror descent interpretation [Chopin, Crucinio, Korba 2023]

Compared to dynamics in SMC: additional exploration step
Compared to dynamics in MCMC: exponential convergence
® unconditional convergence also holds in the discrete level
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Towards Efficient, Multimodal, Derivative-Free Sampler

Gaussian Mixture + Kalman for Multimodal and Derivative-Free
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Numerical Approximation of Fisher-Rao Gradient Flow

Particle methods (i.e. Diracs ansatz)

e Birth-death dynamics [Lu, Lu, Nolen 2019], [Lu, Slepéev, Wang 2022]
® Ensemble MCMC [Lindsey, Weare, Zhang 2021]

Need ways to move the support of the particles to explore the space
and choices of smoothing kernels. Challenging in high dim space.

Our focus: parametric approximation (full support ansatz)
® Gaussian and mixture approximations

e Kalman methodology for derivative-free updates
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Gaussian Approximation by Direct Projection

Gaussian approximate Fisher-Rao gradient flow

dm

7dtt = CtEPut [V@ IOg ppOSt]7

dC,

th = C; + CiE,,, [Vo Vo log ppost]Ct

Project the dynamics into Gaussian space

Can also be obtained by moment closures

Equivalent to natural gradient flow [Amari 1998] for Gaussian VI

Gradient is needed (can be avoided by using Stein’s lemma,
but numerically we found it not very stable)
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Gaussian Approximation by Kalman's Methodology

Discrete scheme of Fisher-Rao gradient flow

1-At

Pn+1(0) < pr(0) (exploration)

pr+1(0) o ﬁn+1(9)ppost(9)At (exploitation)

e Current approximation p,,(0) = N'(0; m,,, Cy,)
e Prediction step: pp41(0) = N(0;mp, 25Ch)
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Gaussian Approximation by Kalman's Methodology

Discrete scheme of Fisher-Rao gradient flow

Prg1(0) x pn(0)' =2 (exploration)

pr+1(0) o ﬁn+1(9)ppost(9)At (exploitation)

e Current approximation p,(0) = N (6; my, Cy,)

e Prediction step: pp41(0) = N(0;mp, 25Ch)

e Analysis step: pnp11(0) X pni1(0) exp(—AtPr(0,y))
where @5(0.,) = 315y (s — GO + 3155 * (0 — ro)|?
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Gaussian Approximation by Kalman's Methodology

Discrete scheme of Fisher-Rao gradient flow

Prg1(0) x pn(0)' =2 (exploration)
Pn+&(9)<X3ﬁn+l(9)ppoﬂ(9)At (exploitation)

e Current approximation p,,(0) = N'(0; m,,, Cy,)

Prediction step: p,y1(0) = (H'mn,ﬁC’n)

Analysis step: pp+1(0) & pn+1(0) exp(—~At®r(6,y))
where @5 (0,y) = 312y * (y — GO)* + 3112 * (0 — r0)|I?
Consider x = F(0) + v with 0 ~ pp41,v ~ N(0, i;)

=[] o) = 2]

x p(6) exp(~AtDR(8)) = pusa(9)

17/33



Kalman Filter Type Approximation

® Gaussian moment closure of joint states and observations
Gg N mn—i—l Cn+1 02+1
p ( ,{L’) ~ 7 9 a:x

w/ dni1 = E[F(0)],Ch%, = Covld, F(6)],Ci%, = Cov[F(9)] + 3%
these integrals are approximated by quadratures
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Kalman Filter Type Approximation

® Gaussian moment closure of joint states and observations

= ol Az
pG(Q,l’) NN( [77}714-1} C?;-‘rl Cn+1 )
w/ dny1 = E[F(0)], Oz, = Cov[o, F(0)], City = Cov[F(6)] + 3¢
these integrals are approximated by quadratures

® Gaussian conditional approximations
pr41(0) = pS(0la) = N (0;mns1, Cy1)
Mpy1 = Mpy1 + C 1 ( n+1)_1(95 — Znt1)

Cpp1 = Cnp1 — 52+1( 1) (Cn+1)

which is derivative free
EnKF, EKI: [Evensen 1994], [Iglesias, Law, Stuart 2013], ...
UKF, UKI: [Julier, Uhlmann, and Durrant-Whyte 1994], [Wan, Van Der Merwe 2000],
[Huang, Huang, Reich, Stuart 2022], ...
Review: [Calvello, Reich, Stuart 2022]
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Gaussian Mixtures with Kalman's Methodology

The Gaussian mixture ansatz

K
pr(0) = w kN (05 o Cr i)
k=1

Prediction step:

® pns1(8) o< pr(0) A o S0y Wi jo N (03 My g, Conge) i (0) 2
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Gaussian Mixtures with Kalman's Methodology

The Gaussian mixture ansatz

K
pr(0) = w kN (05 o Cr i)
k=1

Prediction step:
o pAn+1(9) X ,On(e)l_At X Zle wn,kN(ev Mp K, ka)pn(e)—At

Gaussian moment closure for each component

® wn,kN(g; Mk, Cn,k)pn(9>_At ~ UA)nJrl,kN(e; anrl,ky CnJrl,k:)
achieved by numerical quadratures

® Normalize weights w41 1 to sum to 1
~ K ~ o~ -
® Then pp11(0) = > k) W1 kN (03 Mng1 k6, Crta k)
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Gaussian Mixtures with Kalman's Methodology
Analysis step:

pn+1(0) x (H)Ppost (H)At

W1 kN (0; M1 1, Cn+1 &) Ppost (0) 2

\MN v:»
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Gaussian Mixtures with Kalman's Methodology
Analysis step:

pr+1(0) o< pry1(8) ppost (6) >

'UA)n—i-l,kN(a; mn—i—l,ka Cn—i—l,k)ﬂpost (Q)At

2
M= =

1

B
Il

Kalman filter type approx. for each component

UA]n—I—l,kN(e; mn-{-l,k’ Cn+1,k)ppost (G)At ~ wn+1,kN(0; mn+1,ka Cn+1,k)

M1k = Tin g1k + C W (O ) T @ = En)
where — o
n+1l,k — Cn+1,k - Cn—l—l,k:( n+1 k:) (Cn—i-l k)

W/ &y = E[F(0)],C%% = Cov[d, F(0)],C%%, , = Cov[F(0)] + 2=

Different to many Gaussian mixture Kalman filter and sequential Monte Carlo

approach, the algorithm here has an exploration component 20/33



Towards Efficient, Multimodal, Derivative-Free Sampler

Theoretical Insights
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Continuous limit of Fisher-Rao with Gaussian mixture + Kalman
ek = — Cip /./\/(0; my i, Ct.ix) Vo log pidf + 6’%2;1@ — By k)
Cek =—Cik (/N(a;mt,k, Ctk)Vo Ve log Ptde) Cik

S smeied
Wk = — Wk /(N(9§ My ks Ct k) — pi)(1og pr — 108 ppost)dO
Here p:(0) = Zszl wy kN (0;my i, Cr i) and

2o = E[F(9)], CY% = Cov[d, F(9)], with 6 ~ N (my s, Cr)
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Continuous limit of Fisher-Rao with Gaussian mixture + Kalman
mek =— Ce i /./\/(0; my k., Cy 1) Vo log prdf + 6’%2;1(1' — Z1p)
Cek =—Cik (/N(0§mt,k7 Ctk)Vo Ve log Ptde) Cik

S smeied
Wk = — Wk /(N(9§ My ks Ct k) — pi)(1og pr — 108 ppost)dO
Here p;(6) = Zszl we xN(0;my 1, Cy 1) and

2o = E[F(9)], CY% = Cov[d, F(9)], with 6 ~ N (my s, Cr)

e Without red terms, entropy always increases, i.e., exploration

d
| " logpr >0

® Red terms depend on posterior information
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Gradient flow of KL divergence with respect to GMM parameters

mt,k = _Ct,k /N(ea mt k, Ct,k) (Ve log Pt — vﬁ 10g ppost)de
Ct,k: = _Ct,k: (/N(Gv mt k, Ct,k) (VGVG 1og Pt — VQV(.) 10g ppost)de) Ct,k
wt,k = — Wtk /(N(9; Mk, Ct,k) - pt)(IOg pt — log ppost)de

Here p:(0) = Zszl we kN (0;m4 1, Co 1)

® Let a ={wg,my,Cr: 1 < k< K}

K
da ~ _
3 = (Fl@@) 'WKLLY S wpN (my, Ck) || ppost]
k=1
FI(a): diagonal approximations of Fisher information matrix

® Thus, our | method replaces red terms involving derivatives of
Ppost byC (1*11A)C()‘1 71C0T

e This derivative free approx. is exact for Gaussian posterior

Statistical linearization [Calvello, Reich, Stuart 2022] -



Implications and Properties of The Algorithm
e Gradient flow structure regarding the KL divergence

KL[p|lppost] = / plogp — / p10g ppost

e Mode repulsion and exploration effects due to entropy term

® Fast exploitation of Gaussian-like modes

Exponential
convergence

Convergence

Figure: Conceptual properties of our algorithm
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Towards Efficient, Multimodal, Derivative-Free Sampler

Numerical Demonstrations
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Algorithm Complexity Analysis

Setting: number of mixtures: K; number of iterations: NV

® Prediction step: exploration, without evaluating forward map

e Analysis step: Gaussian integration for moment closures can
be achieved by quadrature, e.g., by unscented transformation,
require (2dp + 1)K forward map evaluation per step

Algorithmic complexity

® Number of forward map evaluation (2dyg + 1) KN
In each iteration, (2dg + 1)K forward evaluations in parallel

® Arithmetic complexity: O(d3KN)
® In our experiments: N = O(10) suffices to work

® K selected by the user
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Numerical Study

We present two experimental results

One-dim bimodal synthetic problem
128-dim bimodal problem in Navier Stokes equations

We use At = 0.5, and run N = 30 iterations

We term our algorithm GMKI (Gaussian mixture Kalman inversion)
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One-dimensional Bimodal Problem

Consider the 1D inverse problem

y=G(0)+n withy=1and G(H) = 6*
The prior is pprior ~ N (3,22).
Different noise levels:

Case A: 1~ N(0,0.2%)
Case B: n~ N(0,0.5%)
Case C: n ~ N(0,1.5%)

where the overlap between these two modes becomes larger, when
the noise level increases
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One-dimensional Bimodal Problem: Case A

—a— Reference —a— Reference
—— GMKI —— GMKI

—a— Reference
—— GMKI

35

-15 -1.0 .5 1.0 15 -15 -1.0 05 1.0 15

10 mode 1
—— mode 2

mode 1

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iterations Iterations Iterations

Figure: One-dimensional bimodal problem with %, = 0.22. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight

estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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One-dimensional Bimodal Problem: Case B

1.6 —=— Reference —=— Reference —=— Reference
— GMKI — GMKI —— GMKI

mode 1

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iterations Iterations Iterations

Figure: One-dimensional bimodal problem with %, = 0.52. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight

estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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One-dimensional Bimodal Problem: Case C

1.01 —=— Reference
— GMKI

—=— Reference ) —=— Reference
—— GMKI 1 —— GMKI

Densities

10 mode 1
—— mode 2

mode 1

0 5 10 15 20 25 3 0 5 10 15 20 25 3 0 5 10 15 20 25 30
Iterations Iterations Iterations

Figure: One-dimensional bimodal problem with %, = 1.5%2. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight

estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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High-dimensional Bimodal Problem

Consider 2d NSE on a periodic domain D = [0, 27] x [0, 27]

%:+(U-V)w—VAw:V><f

® Viscosity v = 0.01
® Non-zero mean background velocity v, = [0, 27]
® f($17$2) = [07 COS(4331)]

e Goal: learn initial vorticity based on observed vorticity at some
observation points at later times 7' = 0.25,0.5

® Gaussian process prior on initial vorcitity (we keep the first 128
Karhunen-Loéve expansion coefficients and use data to learn
these coefficients 0 € R'?%)
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Multimodal Setting: Symmetry in Observations

Figure: Vorticity observations w([z1,x2]) — w([27 — 21, x2]) at 56
equidistant points (solid black dots)
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Results for Learning Initial Vorticity in 2D NSE: K = 3

Truth Truth (mirrored) Mode 1 Mode 2 Mode 3

o

Figure: The true vorticity field, and these modes obtained by GMKI

GMKI
i Truth

©  Mode 1
Mode 2
Mode 3

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

8
6 indices
Figure: The truth KL expansion coefficients 6; (black crosses), and mean
estimations of ¢; for each modes (circles) and the associated marginal

distributions obtained GMKI at the 30th iteration 5233



Summary

Towards fast, multimodal, derivative-free Bayes sampler

® Dynamics: Fisher-Rao gradient flow of KL divergence
® Unconditional exponential convergence
® A special gradient flow for sampling

® Connections to SMC, MCMC, annealing/tempering

e Approximations: Gaussian mixture + Kalman methods
® Gaussian moment closures in joint state and observations
® Gradient flow structure in GMM parameter space
® Mode repulsion and fast convergence for each mode

e Future works: theoretical analysis and refined approximations

Thank You!
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