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Context

The sampling problem
Goal: draw (approximate) samples from

ρ⋆(θ) ∝ exp(−V (θ))

Set-up: V (θ) available, versus samples in generative modeling

Many applications in

• Statistical physics
• Bayes inverse problems
ρ⋆(θ) = ρpost(θ) ∝ ρ(y|θ)ρprior(θ)

• ...
Input Model

𝜃 𝐺 𝜃

𝑦 = 𝐺 𝜃 + noise

Data
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One Particular Motivation: Climate Science

Next generation earth system model
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Challenges

Bayes inverse problem under Gaussian priors and noises:

ρpost(θ) ∝ ρ(y|θ)ρprior(θ) ∝ exp(−ΦR(θ, y))

where ΦR(θ, y) =
1

2
∥Σ− 1

2
η (y −G(θ))∥2 + 1

2
∥Σ− 1

2
0 (θ − r0)∥2

1 Evaluating G is expensive: require large scale PDE solvers

2 Posterior distribution ρpost(θ) can have multiple modes

3 Gradient of ΦR may not available or even feasible

Ask for fast, multimodal, and derivative-free Bayes sampler
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Typical Sampling Approaches

Common structures of many sampling algorithms
1 Design a dynamics of ρt converging to (approximate) ρpost
2 Develop a “numerical scheme” that implements the dynamics

• Sequential Monte Carlo (SMC)
• Finite time dynamics such as ρt ∝ ρ1−t

priorρ
t
post

• E.g., implemented via importance sampling or ensembles

• Markov Chain Monte Carlo (MCMC)
• Infinite time dynamics with ρ∞ = ρpost
• E.g., implemented via Markov chains or ensembles

• Variational inference (VI), Kalman filter, ...
• Dynamics in a parametric family of distributions ρt ∈ Pθ

• E.g., implemented via update of parameters or ensembles

MCMC: [Brooks, Galin, Jones, Meng, 2011], ...
SMC: [Del Moral, Doucet, Jasra, 2006], ...
Variational inference: [Mackay 2008], [Wainright, Jordan 2008], ...
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Towards Fast, Multimodal, Derivative-Free Sampler?

Common structures of many sampling algorithms
1 Design a dynamics of ρt converging to (approximate) ρpost
2 Develop a “numerical scheme” that implements the dynamics

• Dynamics of ρt needs to converge fast
• Typical MCMC needs O(104) runs
• Many dynamics converges slowly in the case of multiple modes

• Dynamics amenable to derivative free numerical approximation
• Small number of forward map evaluations in each iteration
• Vanilla SMC may suffer from weight collapse

Our proposal of algorithms
Fisher-Rao gradient flow w/ Gaussian mixture + Kalman approx.
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Towards Fast, Multimodal, Derivative-Free Sampler

1 Fisher-Rao Gradient Flow for Efficiency

2 Gaussian Mixture + Kalman for Multimodal and Derivative-Free

3 Theoretical Insights

4 Numerical Demonstrations
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Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

∂ρt
∂t

= ρt
(
log ρpost − log ρt

)
− ρtEρt [log ρpost − log ρt]

• KL divergence

E(ρ) = KL[ρ∥ρpost] =
∫
ρ log

( ρ

ρpost

)
dθ

• Fisher-Rao metric tensor

M(ρ)−1ψ = ρ(ψ − Eρ[ψ])

• The gradient flow equation
∂ρt
∂t

= −M(ρt)
−1 δE
δρ

|ρ=ρt = −M(ρt)
−1(log ρt − log ρpost)

Information geometry [Amari 2016], [Ay, Jost, Lê, Schwachhöfer, 2017]
See also: Wasserstein gradient flow, Stein variational gradient flow, ...
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Properties of Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

∂ρt
∂t

= ρt
(
log ρpost − log ρt

)
− ρtEρt [log ρpost − log ρt]

Property (1): Apply any diffeomorphism φ : Rdθ → Rdθ

• ρ̃t = φ#ρt is the transformed distribution at time t
• ρ̃post = φ#ρpost is the transformed target distribution

Then, the form of the flow equation remains invariant

∂ρ̃t
∂t

= ρ̃t
(
log ρ̃post − log ρ̃t

)
− ρ̃tEρ̃t [log ρ̃post − log ρ̃t]

Note: Invariance is useful for fast convergence of dynamics
• Affine invariant MCMC [Goodman, Weare 2010]

• Preconditioned Langevin, Kalman-Wasserstein gradient flow
[Reich Cotter 2015], [Leimkuhler, Matthews, Weare 2018], [Garbuno-Inigo,

Hoffmann, Li, Stuart 2020]
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Convergence of Fisher-Rao gradient flows of KL divergence
[Chen, Huang, Huang, Reich, Stuart 2023]

Let ρt satisfy the Fisher-Rao gradient flow. Assume
• there exist constants K,B > 0 such that ρ0 satisfies

e−K(1+|θ|2) ≤ ρ0(θ)/ρpost(θ) ≤ eK(1+|θ|2)

• the second moments of ρ0, ρpost are both bounded by B

Then, for any t ≥ log
(
(1 +B)K

)
,

KL[ρt∥ρpost] ≤ (2 +B + eB)Ke−t

See also: [Lu, Slepčev, Wang 2022], [Domingo-Enrich, Pooladian 2023]

“Unconditional” uniform exponential convergence

• In sharp contrast to Wasserstein gradient flows and Langvin
dynamics whose convergence rates depend on ρpost (e.g.,
log-concavity, or log-Sobolev constants)
[Jordan, Kinderlehrer, Otto 1998], [Villani 2003, 2008], ...
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Properties of Fisher-Rao Gradient Flow

Fisher-Rao gradient flow of KL divergence

∂ρt
∂t

= ρt
(
log ρpost − log ρt

)
− ρtEρt [log ρpost − log ρt]

Property (2): independent of the normalization consts of ρpost

• Useful for the numerical implementation of the dynamics

• No need to worry about the approximation of the
normalization constant
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Properties (1) (2) Are Special

Unique property of Fisher-Rao metric
[Cencov 2000], [Ay, Jost, Lê, Schwachhöfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the only Riemannian metric on smooth
positive densities (up to scaling) that is invariant under any
diffeomorphism of the parameter space

Unique property of KL divergence
[Chen, Huang, Huang, Reich, Stuart 2023]

Among all f -divergence with continuously differentiable f , KL
divergence is the only one, up to scaling, whose induced gradient
flow under any metric is invariant to the normalization consts of
ρpost

Fisher-Rao gradient flow is special in the context of sampling
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Exploration-Exploitation Scheme for Fisher-Rao GFs

Continuous Fisher-Rao gradient flow of KL divergence

∂ρt
∂t

= ρt
(
log ρpost − log ρt

)
− ρtEρt [log ρpost − log ρt]

Discrete scheme via operator splitting

ρ̂n+1(θ) ∝ ρn(θ)
1−∆t (exploration)

ρn+1(θ) ∝ ρ̂n+1(θ)ρpost(θ)
∆t (exploitation)

• Exploration steps connected to tempering/annealing
• Fixed point interpretation [Huang, Huang, Reich, Stuart 2022]

• Mirror descent interpretation [Chopin, Crucinio, Korba 2023]

• Compared to dynamics in SMC: additional exploration step
• Compared to dynamics in MCMC: exponential convergence

• unconditional convergence also holds in the discrete level
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Towards Efficient, Multimodal, Derivative-Free Sampler

1 Fisher-Rao Gradient Flow for Efficiency

2 Gaussian Mixture + Kalman for Multimodal and Derivative-Free
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Numerical Approximation of Fisher-Rao Gradient Flow

Particle methods (i.e. Diracs ansatz)

• Birth-death dynamics [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]

• Ensemble MCMC [Lindsey, Weare, Zhang 2021]

Need ways to move the support of the particles to explore the space
and choices of smoothing kernels. Challenging in high dim space.

Our focus: parametric approximation (full support ansatz)
• Gaussian and mixture approximations
• Kalman methodology for derivative-free updates
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Gaussian Approximation by Direct Projection

Gaussian approximate Fisher-Rao gradient flow

dmt

dt
= CtEρat

[∇θ log ρpost],

dCt

dt
= Ct + CtEρat

[∇θ∇θ log ρpost]Ct

• Project the dynamics into Gaussian space

• Can also be obtained by moment closures

• Equivalent to natural gradient flow [Amari 1998] for Gaussian VI

• Gradient is needed (can be avoided by using Stein’s lemma,
but numerically we found it not very stable)
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Gaussian Approximation by Kalman’s Methodology

Discrete scheme of Fisher-Rao gradient flow

ρ̂n+1(θ) ∝ ρn(θ)
1−∆t (exploration)

ρn+1(θ) ∝ ρ̂n+1(θ)ρpost(θ)
∆t (exploitation)

• Current approximation ρn(θ) = N (θ;mn, Cn)

• Prediction step: ρ̂n+1(θ) = N (θ;mn,
1

1−∆tCn)

• Analysis step: ρn+1(θ) ∝ ρ̂n+1(θ) exp(−∆tΦR(θ, y))

where ΦR(θ, y) =
1
2∥Σ

− 1
2

η (y −G(θ))∥2 + 1
2∥Σ

− 1
2

0 (θ − r0)∥2

• Consider x = F (θ) + ν with θ ∼ ρ̂n+1, ν ∼ N (0, Σν
∆t )

x =

ï
y
r0

ò
F (θ) =

ï
G(θ)
θ

ò
Σν =

ï
Ση 0
0 Σ0

ò
Then ρ(θ|x) = ρ(θ)ρ(x|θ)

ρ(x)
∝ ρ(θ) exp(−∆tΦR(θ)) = ρn+1(θ)
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Kalman Filter Type Approximation

• Gaussian moment closure of joint states and observations

ρG(θ, x) ∼ N
( ï“mn+1

x̂n+1

ò
,

ñ“Cn+1
“Cθx
n+1“CθxT

n+1
“Cxx
n+1

ô)
w/ x̂n+1 = E[F (θ)], “Cθx

n+1 = Cov[θ, F (θ)], “Cxx
n+1 = Cov[F (θ)] + Σν

∆t

these integrals are approximated by quadratures

• Gaussian conditional approximations

ρn+1(θ) ≈ ρG(θ|x) = N (θ;mn+1, Cn+1)

mn+1 = “mn+1 + “Cθx
n+1(“Cxx

n+1)
−1(x− x̂n+1)

Cn+1 = “Cn+1 − “Cθx
n+1(“Cxx

n+1)
−1(“Cθx

n+1)
T

which is derivative free
EnKF, EKI: [Evensen 1994], [Iglesias, Law, Stuart 2013], ...

UKF, UKI: [Julier, Uhlmann, and Durrant-Whyte 1994], [Wan, Van Der Merwe 2000],

[Huang, Huang, Reich, Stuart 2022], ...

Review: [Calvello, Reich, Stuart 2022]
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Gaussian Mixtures with Kalman’s Methodology

The Gaussian mixture ansatz

ρn(θ) =

K∑
k=1

wn,kN (θ;mn,k, Cn,k)

Prediction step:

• ρ̂n+1(θ) ∝ ρn(θ)
1−∆t ∝

∑K
k=1wn,kN (θ;mn,k, Cn,k)ρn(θ)

−∆t

Gaussian moment closure for each component
• wn,kN (θ;mn,k, Cn,k)ρn(θ)

−∆t ≈ ŵn+1,kN (θ;“mn+1,k, “Cn+1,k)
achieved by numerical quadratures

• Normalize weights ŵn+1,k to sum to 1

• Then ρ̂n+1(θ) ≈
∑K

k=1 ŵn+1,kN (θ;“mn+1,k, “Cn+1,k)
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Gaussian Mixtures with Kalman’s Methodology

Analysis step:

ρn+1(θ) ∝ ρ̂n+1(θ)ρpost(θ)
∆t

≈
K∑
k=1

ŵn+1,kN (θ;“mn+1,k, “Cn+1,k)ρpost(θ)
∆t

Kalman filter type approx. for each component

ŵn+1,kN (θ;“mn+1,k, “Cn+1,k)ρpost(θ)
∆t ≈ wn+1,kN (θ;mn+1,k, Cn+1,k)

where
mn+1,k = “mn+1,k + “Cθx

n+1,k(
“Cxx
n+1,k)

−1(x− x̂n+1,k)

Cn+1,k = “Cn+1,k − “Cθx
n+1,k(

“Cxx
n+1,k)

−1(“Cθx
n+1,k)

T

w/ x̂n+1,k = E[F (θ)], “Cθx
n+1,k = Cov[θ, F (θ)], “Cxx

n+1,k = Cov[F (θ)] + Σν

∆t

Different to many Gaussian mixture Kalman filter and sequential Monte Carlo

approach, the algorithm here has an exploration component
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Continuous limit of Fisher-Rao with Gaussian mixture + Kalman

ṁt,k =− Ct,k

∫
N (θ;mt,k, Ct,k)∇θ log ρtdθ + “Cθx

t,kΣ
−1
ν (x− x̂t,k)

Ċt,k =− Ct,k

Å∫
N (θ;mt,k, Ct,k)∇θ∇θ log ρtdθ

ã
Ct,k

− “Cθx
t,kΣ

−1
ν
“CθxT

t,k

ẇt,k =− wt,k

∫
(N (θ;mt,k, Ct,k)− ρt)(log ρt − log ρpost)dθ

Here ρt(θ) =
∑K

k=1 wt,kN (θ;mt,k, Ct,k) and

x̂t,k = E[F (θ)], “Cθx
t,k = Cov[θ, F (θ)], with θ ∼ N (mt,k, Ct,k)

• Without red terms, entropy always increases, i.e., exploration

d

dt

∫
−ρt log ρt ≥ 0

• Red terms depend on posterior information
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ṁt,k =− Ct,k

∫
N (θ;mt,k, Ct,k)∇θ log ρtdθ + “Cθx

t,kΣ
−1
ν (x− x̂t,k)
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Here ρt(θ) =
∑K

k=1 wt,kN (θ;mt,k, Ct,k) and

x̂t,k = E[F (θ)], “Cθx
t,k = Cov[θ, F (θ)], with θ ∼ N (mt,k, Ct,k)

• Without red terms, entropy always increases, i.e., exploration

d

dt

∫
−ρt log ρt ≥ 0

• Red terms depend on posterior information
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Gradient flow of KL divergence with respect to GMM parameters

ṁt,k = −Ct,k

∫
N (θ;mt,k, Ct,k)

(
∇θ log ρt −∇θ log ρpost

)
dθ

Ċt,k = −Ct,k

(∫
N (θ;mt,k, Ct,k)

(
∇θ∇θ log ρt −∇θ∇θ log ρpost

)
dθ

)
Ct,k

ẇt,k = −wt,k

∫
(N (θ;mt,k, Ct,k)− ρt)(log ρt − log ρpost)dθ

Here ρt(θ) =
∑K

k=1 wt,kN (θ;mt,k, Ct,k)

• Let a = {wk,mk, Ck : 1 ≤ k ≤ K}
da

dt
= −(F̃I(a))−1∇aKL[

K∑
k=1

wkN (mk, Ck)∥ρpost]

F̃I(a): diagonal approximations of Fisher information matrix

• Thus, our method replaces red terms involving derivatives of
ρpost by “Cθx

t,kΣ
−1
ν (x− x̂t,k),“Cθx

t,kΣ
−1
ν
“CθxT

t,k

• This derivative free approx. is exact for Gaussian posterior
Statistical linearization [Calvello, Reich, Stuart 2022]
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Implications and Properties of The Algorithm

• Gradient flow structure regarding the KL divergence

KL[ρ∥ρpost] =
∫
ρ log ρ−

∫
ρ log ρpost

• Mode repulsion and exploration effects due to entropy term
• Fast exploitation of Gaussian-like modes

Mode repulsion

Exponential
convergence

Convergence

Mode repulsion & capturing

Figure: Conceptual properties of our algorithm
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Towards Efficient, Multimodal, Derivative-Free Sampler

1 Fisher-Rao Gradient Flow for Efficiency

2 Gaussian Mixture + Kalman for Multimodal and Derivative-Free

3 Theoretical Insights

4 Numerical Demonstrations
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Algorithm Complexity Analysis

Setting: number of mixtures: K; number of iterations: N

• Prediction step: exploration, without evaluating forward map
• Analysis step: Gaussian integration for moment closures can

be achieved by quadrature, e.g., by unscented transformation,
require (2dθ + 1)K forward map evaluation per step

Algorithmic complexity
• Number of forward map evaluation (2dθ + 1)KN

In each iteration, (2dθ + 1)K forward evaluations in parallel
• Arithmetic complexity: O(d3θKN)

• In our experiments: N = O(10) suffices to work
• K selected by the user
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Numerical Study

We present two experimental results

1 One-dim bimodal synthetic problem
2 128-dim bimodal problem in Navier Stokes equations

We use ∆t = 0.5, and run N = 30 iterations

We term our algorithm GMKI (Gaussian mixture Kalman inversion)
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One-dimensional Bimodal Problem

Consider the 1D inverse problem

y = G(θ) + η with y = 1 and G(θ) = θ2

The prior is ρprior ∼ N (3, 22).

Different noise levels:

Case A: η ∼ N (0, 0.22)

Case B: η ∼ N (0, 0.52)

Case C: η ∼ N (0, 1.52)

where the overlap between these two modes becomes larger, when
the noise level increases
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One-dimensional Bimodal Problem: Case A
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Figure: One-dimensional bimodal problem with Ση = 0.22. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight
estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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One-dimensional Bimodal Problem: Case B
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Figure: One-dimensional bimodal problem with Ση = 0.52. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight
estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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One-dimensional Bimodal Problem: Case C
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Figure: One-dimensional bimodal problem with Ση = 1.52. Top row: posterior
distributions estimated by random walk MCMC (black bins) and GMKI (blue lines) at
the 30-th iteration obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
(from left to right); Mean estimation of each mode is marked. Bottom row: weight
estimations obtained by 1-modal GMKI, 2-modal GMKI and 3-modal GMKI
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High-dimensional Bimodal Problem

Consider 2d NSE on a periodic domain D = [0, 2π]× [0, 2π]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = ∇× f

• Viscosity ν = 0.01

• Non-zero mean background velocity vb = [0, 2π]

• f(x1, x2) = [0, cos(4x1)]

• Goal: learn initial vorticity based on observed vorticity at some
observation points at later times T = 0.25, 0.5

• Gaussian process prior on initial vorcitity (we keep the first 128
Karhunen-Loève expansion coefficients and use data to learn
these coefficients θ ∈ R128)
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Multimodal Setting: Symmetry in Observations
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Figure: Vorticity observations ω([x1, x2])− ω([2π − x1, x2]) at 56
equidistant points (solid black dots)
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Results for Learning Initial Vorticity in 2D NSE: K = 3

Truth Truth (mirrored) Mode 1 Mode 2 Mode 3

Figure: The true vorticity field, and these modes obtained by GMKI
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Figure: The truth KL expansion coefficients θi (black crosses), and mean
estimations of θi for each modes (circles) and the associated marginal
distributions obtained GMKI at the 30th iteration
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Summary

Towards fast, multimodal, derivative-free Bayes sampler

• Dynamics: Fisher-Rao gradient flow of KL divergence
• Unconditional exponential convergence
• A special gradient flow for sampling
• Connections to SMC, MCMC, annealing/tempering

• Approximations: Gaussian mixture + Kalman methods
• Gaussian moment closures in joint state and observations
• Gradient flow structure in GMM parameter space
• Mode repulsion and fast convergence for each mode

• Future works: theoretical analysis and refined approximations

Thank You!
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