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Numerical Approximation and Inference

Partial Differential Equations: infinite degrees of freedom (DOF)

F(x, t, u, ∂tu,∇xu,∇2
xu, a, ξ, ...) = 0

Stationary PDEs, time dependent, inverse problems, UQ, ...

Numerical Approximation (finite DOF) designed by experts
Finite difference/element/volume
Spectral methods
Boundary integral methods
Meshless methods, collocation methods
Multiscale methods, numerical homogenization, ...

Inference and ML to automate the finite ↔ infinite DOF process
Gaussian process (GP) and kernel methods for numerical integration
GPs and kernel methods for ODEs, linear PDEs
Bayes probabilistic numerics, Bayes numerical analysis, UQ
Physics informed ML (Deep Ritz methods, PINNs, SDEs...)
Operator learning (Kernels, Neural Operators, DeepONets), ...
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This talk

Our Goal

A general GP framework for solving and learning nonlinear PDEs

Intepretable, convergent and amenable to numerical analysis1

generalize RBF collocation methods and meshless kernel methods

Near-linear time and space complexity implementation2

quantitative screening effects for GPs with PDE measurements

Hierarchical parameter learning in the GP, or kernel learning3

consistency analysis of Kernel Flow and Emperical Bayes

1Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. “Solving
and learning nonlinear pdes with gaussian processes”. In: Journal of Computational
Physics (2021).

2Yifan Chen, Florian Schaefer, and Houman Owhadi. “Sparse Cholesky
Factorization for Solving Nonlinear PDEs via Gaussian Processes”. In preparation.

3Yifan Chen, Houman Owhadi, and Andrew Stuart. “Consistency of empirical
Bayes and kernel flow for hierarchical parameter estimation”. In: Mathematics of
Computation (2021).
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A Nonlinear Elliptic PDE Example

Consider the stationary elliptic PDE{
−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Domain Ω ⊂ Rd.
PDE data f, g : Ω→ R.

PDE has a unique strong/classical solution u?.
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A Nonlinear Elliptic PDE: The Methodology

1 Choose a kernel K : Ω× Ω→ R
Corresponding RKHS U with norm ‖ · ‖

2 Choose some collocation points

X int = {xint
1 , . . . ,x

int
M int} ⊂ Ω

Xbd = {xbd
1 , . . . ,x

bd
Mbd} ⊂ ∂Ω

3 Solve the optimization problem
minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd
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Bayes Inference Interpratation of the Methodology

1 Choose a kernel K : Ω× Ω→ R (Choose the prior GP(0,K))

Corresponding RKHS U with norm ‖ · ‖
2 Choose some collocation points (Choose the data/likelihood)

X int = {xint
1 , . . . ,x

int
M int} ⊂ Ω

Xbd = {xbd
1 , . . . ,x

bd
Mbd} ⊂ ∂Ω

3 Solve the optimization problem (Find the “MAP”)
minimize

u∈U
‖u‖

s.t. −∆u(xm) + τ(u(xm)) = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

Generalize linear PDEs in Bayes probabilistic numerical methods45

Solving PDEs as a Bayes inverse problem
4Houman Owhadi. “Bayesian numerical homogenization”. In: Multiscale Modeling

& Simulation 13.3 (2015), pp. 812–828.
5Jon Cockayne, Chris J Oates, Timothy John Sullivan, and Mark Girolami.

“Bayesian probabilistic numerical methods”. In: SIAM Review 61.4 (2019),
pp. 756–789.
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Introducing Slack Variables


minimize

u∈U
‖u‖

s.t. −∆u(xm) + u(xm)3 = f(xm), for xm ⊂ X int

u(xn) = g(xn), for xn ⊂ Xbd

m (N = Mbd + 2M int)

minimize
z=(zbd,zint,zint

∆ )∈RN



minimize
u∈U

‖u‖

s.t. u(Xbd) = zbd

u(X int) = zint

∆u(X int) = zint
∆

s.t. − zint + τ(zint
∆ ) = f(X int)

zbd = g(Xbd)
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Inner optimization

The inner problem is linear

minimize
u∈U

‖u‖

s.t. u(Xbd) = zbd, u(X int) = zint,∆u(X int) = zint
∆

Measurement vector φ := (δXbd , δX int , δX int ◦∆) ∈ (U∗)⊗N
Kernel vector and matrix

K(x,φ) =
(
K(x, Xbd),K(x, X int),∆yK(x, X int)

)
∈ RN

K(φ,φ) = K(Xbd, Xbd) K(Xbd, X int) ∆yK(Xbd, X int)
K(X int, Xbd) K(X int, X int) ∆yK(X int, X int)

∆xK(X int, Xbd) ∆xK(X int, X int) ∆x∆yK(X int, X int)

 ∈ RN×N

Minimizer u(x) = K(x,φ)K(φ,φ)−1z
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Representation of the Minimizer

Combine the two level optimization:

Representer theorem

Every minimizer u† can be represented as

u†(x) = K(x,φ)K(φ,φ)−1z†,

where the vector z† ∈ RN is a minimizer of min
z∈RN

zTK(φ,φ)−1z

s.t. F (z) = y

Function F : RN → RM depends on PDE collocation constraints

y contains PDE boundary and RHS data
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Towards A Practical Algorithm

Quadratic optimization with nonlinear constraints

A simple linearization algorithm zk → zk+1 min
z∈RN

zTK(φ,φ)−1z

s.t. F (zk) + F ′(zk)(z− zk) = y.

“Newton’s iteration for the nonlinear PDE”

Poor conditioning of K(φ,φ), and scale imbalance between blocks
Adding scale-aware regularization K(φ,φ) + λdiag(K(φ,φ))
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Numerical Experiments: Stationary Problems

Nonlinear Elliptic Equation, τ(u) = u3{
−∆u(x) + τ(u(x)) = f(x), ∀x ∈ Ω,

u(x) = g(x), ∀x ∈ ∂Ω.

Truth: d = 2, u?(x) = sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2)

Kernel: K(x,y;σ) = exp(− |x−y|
2

2σ2 )
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Figure: Ndomain = 900, Nboundary = 124
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Convergence Study

For τ(u) = 0, u3, use Gaussian kernel with lengthscale σ

L2, L∞ accuracy, compared with Finite Difference (FD)
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Figure: Convergence of the kernel method is fast, since the solution is smooth
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Scalability: Taming the Dense Kernel Matrice

Sparse Cholesky factor for kernel matrices under coarse to fine ordering6

Coarse to fine: max-min ordering

xk = argmaxxid(xi, {xj , 1 ≤ j < k})

with lengthscale lk = d(xk, {xj , 1 ≤ j < k})

6F Schäfer, TJ Sullivan, and H Owhadi. “Compression, inversion, and approximate
PCA of dense kernel matrices at near-linear computational complexity”. In: Multiscale
Modeling & Simulation 19.2 (2021), pp. 688–730.
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Why Sparse? Cholesky Factors and Screening Effects

Let Θ ∈ Rd×d, Θij = k(xi, xj), and X ∼ N (0,Θ)

Cholesky factor of the covariance matrix Θ = LLT

Lij
Ljj

=
Cov[Xi, Xj |X1:j−1]

Var[Xj |X1:j−1]
(i ≥ j)

Cholesky factor of the precision matrix Θ−1 = UUT

Uij
Ujj

= (−1)i 6=j
Cov[Xi, Xj |X1:j−1\{i}]

Var[Xj |X1:j−1\{i}]
(i ≤ j)

Screening effects: x1:j ordered from coarse to fine; scale of xj is lj , then
for certain kernel arsing from PDEs 8

Cov[Xi, Xj |X1:j−1] . exp

(
−d(xi, xj)

lj

)
7Michael L Stein. “The screening effect in kriging”. In: Annals of statistics 30.1

(2002), pp. 298–323.
8Schäfer, Sullivan, and Owhadi, “Compression, inversion, and approximate PCA of

dense kernel matrices at near-linear computational complexity”.
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Screening Effects with PDE measurements

Recall the kernel matrices K(Xbd, Xbd) K(Xbd, X int) ∆yK(Xbd, X int)
K(X int, Xbd) K(X int, X int) ∆yK(X int, X int)

∆xK(X int, Xbd) ∆xK(X int, X int) ∆x∆yK(X int, X int)


How to order when there are derivative measurements?

Order pointwise measurements from coarse to fine

PDE measurements follow behind (with the same ordering)

Theorem: screening effects hold for such ordering

Theory: need technical assumptions

The kernel is the Green function of some differential operator
L : Hs

0(Ω)→ H−s(Ω)

Practice: works more generally
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Near Linear Complexity by Sparse Cholesky

Ignore correlation beyond d(x, xj) ≥ ρlj (which is O(exp(−ρ)))
Once ordering and sparsity pattern determined, use KL minimization
algorithm9: O(Nρd) memory and O(Nρ2d) time
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Solution Accuracy L2
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Matern7/2, = 4.0, slope 1.16
Matern9/2, = 4.0, slope 1.13

Figure: Run 3 GN iterations. Accuracy floor due to finite ρ and regularization

9Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. “Sparse Cholesky
Factorization by Kullback–Leibler Minimization”. In: SIAM Journal on Scientific
Computing 43.3 (2021), A2019–A2046.
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Numerical Experiments: Time Dependent Problems

Viscous Burgers’ Equation

Viscosity ν = 0.02
∂tu+ u∂su− ν∂2

su = 0, ∀(s, t) ∈ (−1, 1)× (0, 1].

u(s, 0) = − sin(πs),

u(−1, t) = u(1, t) = 0.

Shock when ν = 0. Problem harder for smaller ν

Choose an anisotropic spatio-temperal GP
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Numerical Experiments: Viscous Burgers’ Equation

Kernel: K((s, t), (s′, t′)) = exp
(
−202|s− s′|2 − 32|t− t′|2

)
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Figure: Ndomain = 2000, Nboundary = 400
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Push to Small Viscosity

Discretize in time first, then apply the methodology to the resulting
spatial PDE: dimension of kernel matrices is reduced
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Figure: ν = 10−3; number of spatial points 2000; time step size 0.01;
Matern7/2 kernel with lengthscale 0.02; use 2 GN iterations

At time t = 1, L2 accuracy: 10−4

Observation: accuracy not monotone regarding time t

Implication: further improvement through time-adaptive kernels
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Numerical Experiments: Inverse Problems

Darcy Flow inverse problems
min
u,a
‖u‖2K + ‖a‖2Γ +

1

γ2

I∑
j=1

|u(xj)− oj |2,

s.t. −div(exp(a)∇u)(xm) = 1, ∀xm ∈ (0, 1)2

u(xm) = 0, ∀xm ∈ ∂(0, 1)2.

Recover a from pointwise measurements of u

Model (u, a) as independent GPs

Impose PDE constraints and formulate Bayesian inverse problem
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Numerical Experiments: Darcy Flow

Kernel K(x,x′;σ) = exp
(
− |x−x

′|2
2σ2

)
for both u and a
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Figure: Ndomain = 400, Nboundary = 100, Nobservation = 50
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Theoretical Foundation: Consistency

Consistency of the minimizer{
min
u∈U

‖u‖

s.t. PDE constraints at {x1, . . . ,xM} ∈ Ω.

Convergence theory

K is chosen so that

U ⊆ Hs(Ω) for some s > s∗ where s∗ = d/2 + order of PDE.
u? ∈ U .

Fill distance of {x1, . . . ,xM} → 0 as M →∞.

Then as M →∞, u† → u? pointwise in Ω and in Ht(Ω) for t ∈ (s∗, s).
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Theoretical Foundation: Kernel Learning

Hierarchical parameters in the kernel Kθ

Good θ improves the performance

Algorithms for learning θ: another level of optimization

Bayes approach built in GPs: e.g. Empirical Bayes (EB)

Kernel Flow (KF)10: a variant of cross-validation

minθ Eπ
‖u†(·, X, θ)− u†(·, πX, θ)‖2Kθ

‖u†(·, X, θ)‖2Kθ

u†(·, X, θ) is the solution using collocation points X and kernel Kθ

πX is a subsampling of X
‖ · ‖Kθ is the RKHS norm for the kernel Kθ; attain explicit formula
due to representer theorem

Our result: Consistency of learning regularity of Matérn-like kernels

EB and KF learn different parameters for linear problems

10Houman Owhadi and Gene Ryan Yoo. “Kernel flows: From learning kernels from
data into the abyss”. In: Journal of Computational Physics 389 (2019), pp. 22–47.
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Take-aways

Solving and Learning Nonlinear PDEs with Gaussian Processes

Algorithm

A simple framework for solving and learning nonlinear PDEs

Near-linear complexity treatment of the dense kernel matrices

Experiments: stationary PDEs, time dependent, inverse problems

Future work: parametric PDEs, high dimensional PDEs, UQ, ...

Convergence theory

Consistency as fill-in distance goes to 0 (asymptotic only)

Future work: convergence rates?

Kernel learning (The hard part)

Consistency of Kernel Flow and Empirical Bayes for linear problem :)

Thank you!
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