Natural gradient in Wasserstein statistical manifold¹ undergraduate thesis

Yifan Chen

Department of Mathematical Sciences Tsinghua University

June 4, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

¹arxiv:1805.08380

Introduction

The statistical distance finds wide applications in machine learning

minimize
$$d(\rho, \rho_e)$$
 s.t. $\rho \in \mathcal{P}_{\theta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

where

- \mathcal{P}_{θ} : a parameterized subset of probability density space;
- ρ_e : a given target density (often empirical distribution);
- d: quantifies the difference between ρ and ρ_e

Example

• \mathcal{P}_{θ} : exponential family

$$\rho(x,\theta) = \frac{1}{Z(\theta)} \exp(\sum f_i(x)\theta_i + r(x)), \quad x \in \Omega \subset \mathbb{R}^n$$

other: mixture model, neural network, etc.

► *d* : KL divergence

$$\min_{\rho(\cdot,\theta)\in\mathcal{P}_{\theta}}\mathsf{KL}(\rho_{e}||\rho(\cdot,\theta)) = \int_{\Omega}\rho_{e}(x)\log\frac{\rho_{e}(x)}{\rho(x,\theta)}dx.$$

where, $\rho_e(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_i}$ empirical distribution. rewrite:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} -\log \rho(X_i, \theta) = L(\theta),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

i.e. maximum likelihood method in statistics

Natural gradient

natural gradient descent

$$\theta^{n+1} = \theta^n - \tau G_F(\theta^n)^{-1} \nabla_{\theta} \mathsf{KL}(\rho_e || \rho(\cdot, \theta^n)),$$

where

$$\begin{split} \mathsf{G}_{\mathsf{F}}(\theta) &= \int_{\mathbb{R}} \rho(x,\theta) (\nabla_{\theta} \log \rho(x,\theta))^T \nabla_{\theta} \log \rho(x,\theta) dx \\ &= \nabla_{\theta'}^2 \mathsf{KL}(\rho(\cdot,\theta)) ||\rho(\cdot,\theta'))|_{\theta'=\theta}. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

advantage:

- asymptotically Newton preconditioning
- parameterization invariant
- Fisher efficient based on Cramer-Rao bound
- (Θ, G_F) (Fisher-Rao) statistical manifold

Ground cost related distance

Optimal transport provides the Wasserstein distance among histograms, relying on the structure of **sample space** (ground cost c)

Denote $\rho_0 = \delta_{x_0}, \rho_1 = \delta_{x_1}$. Compare

$$W(\rho^0,\rho^1)=c(x_0,x_1)$$

vs.

$$\mathsf{TV}(\rho_0, \rho_1) = \int_{\Omega} |\rho^0(x) - \rho^1(x)| dx = 2$$

VS.

$$\mathsf{KL}(\rho^{0}||\rho^{1}) = \int_{\Omega} \rho^{0}(x) \log \frac{\rho^{0}(x)}{\rho^{1}(x)} dx = \infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々⊙

Optimal transport

Monge's problem

$$\inf_{\mathcal{T}} \int_{\Omega} \|x - \mathcal{T}(x)\|^2 \rho^0(x) dx \quad \text{s.t. } \int_{\mathcal{A}} \rho^1(x) dx = \int_{\mathcal{T}^{-1}(\mathcal{A})} \rho^0(x) dx, \forall \text{ Borel } \mathcal{A}$$

Kantorovich's problem

$$\min_{\pi\in\Pi(\rho^0,\rho^1)}\int_{\Omega\times\Omega}\|x-y\|^2\pi(x,y)dxdy,$$

Π: joint probability measures on $\Omega \times \Omega$ with marginals ρ^0 , ρ^1 .

Dynamical formulation, known as Benamou-Brenier formula

$$\begin{split} &\inf_{\Phi_t} \int_0^1 \int_{\Omega} \|\nabla \Phi(t,x)\|^2 \rho(t,x) dx dt \\ &\text{s.t.} \ \frac{\partial \rho(t,x)}{\partial t} + \nabla \cdot (\rho(t,x) \nabla \Phi(t,x)) = 0, \\ &\rho(0,x) = \rho^0(x), \\ &\rho(1,x) = \rho^1(x) \\ \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Benamou-Brenier formula gives a Riemannian differential structure on density space:

• L^2 -Wasserstein metric tensor on the tangent space of densities $g_{\rho}: T_{\rho}\mathcal{P}_2(\Omega) \times T_{\rho}\mathcal{P}_2(\Omega) \to \mathbb{R}$:

$$g_{\rho}(\sigma_1,\sigma_2) = \int_{\Omega} \nabla \Phi_1(x) \cdot \nabla \Phi_2(x) \rho(x) dx,$$

where $\sigma_1 = V_{\Phi_1} := -\nabla \cdot (\rho(x) \nabla \Phi_1(x)), \ \sigma_2 = V_{\Phi_2}$ with $\Phi_1(x), \Phi_2(x) \in C^{\infty}(\Omega)/\mathbb{R}.$

Wasserstein metric as geodesic distance

$$(W_{2}(\rho^{0},\rho^{1}))^{2} = \inf_{\Phi_{t}} \left\{ \int_{0}^{1} g_{\rho_{t}}(V_{\Phi_{t}},V_{\Phi_{t}}) dt : \partial_{t}\rho_{t} = V_{\Phi_{t}}, \ \rho(0,x) = \rho^{0}, \ \rho(1,x) = \rho^{1} \right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark

Many works use this Riemannian structure and establish connections to optimization

e.g. V(x) σ -strongly convex, $\rho^*(x) \sim \exp(-V(x))$

-				~	
	2	h	P .	(or	narison
1	a		с.	COII	ipanison

	Optimization in density space	in Euclidean space
loss	$KL(\rho,\rho^*)$	$f(x) - f(x^*)$
distance	$W^2_2(ho, ho^*)$	$ x - x^* ^2$
gradient	$\int \ \nabla \log \frac{\rho(x)}{\rho^*(x)}\ ^2 \rho(x) dx$	$\ \nabla f(x)\ ^2$
iteration	$dX_t = -\nabla V(X_t) + \sqrt{2}B_t$	$dX_t = -\nabla V(X_t)$
density	$\partial_t ho_t = abla \cdot \left(ho abla \log rac{ ho(x)}{ ho^*(x)} ight)$	$\partial_t \rho_t = \nabla \cdot (\rho \nabla V)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remark

a line of work proves sampling complexity of discrete Langevin dynamics with strongly convex assumptions

- Dalalyan(2017) proved complexity O(^d/_{e²}) in total variation distance, Moulines(2016) in Wasserstein metric, and Bartlett(2017) in KL divergence.
- ► Bartlett and Jordan(2018) proved a better convergence rate O(^{√d}/_ϵ) using underdamped Langevin (COLT 2018)
- Bernton(2018) and Wibisono(2018) both consider sampling as optimization in density space, using the Wasserstein geometry (COLT 2018)
- a mean-field view of the landscape of two-layers neural networks
 - Mei(2018) considers a density over parameters in two-layer networks, as a mean-field limit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **b** goal: Wasserstein geometry in parametrized densities \mathcal{P}_{θ}
- **benefits:** boost computation, e.g. natural gradient descent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

approach: "pull-back" of metric tensor

Wasserstein statistical manifold

• Statistical model: triple (Ω, Θ, ρ)

 L²-Wasserstein metric tensor in parameter space: the inner product g_θ on T_θ(Θ) is defined as

$$g_{\theta}(\xi,\eta) = \int_{\Omega} \rho(x,\theta) \nabla \Phi_{\xi}(x) \cdot \nabla \Phi_{\eta}(x) dx,$$

where ξ, η are tangent vectors in $T_{\theta}(\Theta)$, Φ_{ξ} and Φ_{η} satisfy

$$\langle
abla_{ heta}
ho(x, heta), \xi
angle = -
abla \cdot (
ho
abla \Phi_{\xi}(x))$$

and

.

$$\langle
abla_{ heta}
ho(x, heta), \eta
angle = -
abla \cdot (
ho
abla \Phi_{\eta}(x))$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Gradient flow

metric tensor

$$egin{aligned} g_{ heta}(\xi,\eta) &= \int_{\Omega}
ho(x, heta)
abla \Phi_{\xi}(x) \cdot
abla \Phi_{\eta}(x) dx \ &= \int_{\Omega} \langle
abla_{ heta}
ho(x, heta), \xi
angle \cdot \Phi_{\eta}(x) dx \ &= \int_{\Omega} \langle
abla_{ heta}
ho(x, heta), \xi
angle (-\Delta_{ heta})^{-1} \langle
abla_{ heta}
ho(x, heta), \eta
angle dx \ &= \xi^T G_W(heta) \eta \end{aligned}$$

where: $-\Delta_{\theta} = -\nabla \cdot (\rho(x,\theta)\nabla),$ $(G_W)_{ij}(\theta) = \int_{\Omega} \partial_{\theta_i} \rho(x,\theta) (-\Delta_{\theta})^{-1} \partial_{\theta_j} \rho(x,\theta) dx$

• gradient flow of function $R \in C^1(\Theta)$ in (Θ, g_{θ})

$$\frac{d\theta}{dt} = -G_{W}(\theta)^{-1} \nabla_{\theta} R(\theta).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Continuous sample space in 1D

For 1D densities, the Wasserstein metric tensor $g_{\theta}(\xi,\eta) = \langle \xi, G_{W}(\theta)\eta \rangle$ such that

$$G_{W}(\theta) = \int_{\mathbb{R}} \frac{1}{\rho(x,\theta)} (\nabla_{\theta} F(x,\theta))^{T} \nabla_{\theta} F(x,\theta) dx$$

where F: cdf of $\rho(\theta)$

Compare it with Fisher-Rao metric tensor (or Fisher information matrix)

$$\begin{split} G_{\mathsf{F}}(\theta) &= \int_{\mathbb{R}} \rho(x,\theta) (\nabla_{\theta} \log \rho(x,\theta))^{\mathsf{T}} \nabla_{\theta} \log \rho(x,\theta) dx \\ &= \int_{\mathbb{R}} \frac{1}{\rho(x,\theta)} (\nabla_{\theta} \rho(x,\theta))^{\mathsf{T}} \nabla_{\theta} \rho(x,\theta) dx, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Wasserstein natural gradient descent

• given objective $R(\rho(\cdot, \theta))$, the Wasserstein natural gradient descent:

$$\theta^{n+1} = \theta^n - \tau G_{\mathcal{W}}(\theta^n)^{-1} \nabla_{\theta} R(\rho(\cdot, \theta^n)),$$

• (informal theorem) if $R(\rho(\cdot,\theta)) = \frac{1}{2} (W_2(\rho(\cdot,\theta),\rho^*))^2$, then

$$\nabla_{\theta}^{2} R(\rho(\cdot,\theta)) = \int_{\Omega} (T(x,\theta) - x) \nabla_{\theta}^{2} F(x,\theta) dx + \int_{\Omega} \frac{T'(x,\theta)}{\rho(x,\theta)} (\nabla_{\theta} F(x,\theta))^{T} \nabla_{\theta} F(x,\theta) dx$$

where, T optimal transport map

• hence if
$$\rho^* \in \mathcal{P}_{\theta}$$
, then

$$\lim_{\theta \to \theta^*} G_{W}(\theta) = \nabla_{\theta}^2 R(\rho(\cdot, \theta^*))$$

another preconditioner:

$$\bar{G}_{W}(\theta) := \int \frac{T'(x,\theta)}{\rho(x,\theta)} (\nabla_{\theta} F(x,\theta))^{T} \nabla_{\theta} F(x,\theta) dx$$

Numerical examples

Consider the Gaussian mixture model $a\mathcal{N}(\mu_1, \sigma_1) + (1 - a)\mathcal{N}(\mu_2, \sigma_2)$ with density functions:

$$\rho(x,\theta) = \frac{a}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} + \frac{1-a}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}},$$

where $\theta = (a, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$ and $a \in [0, 1]$.

Figure: Densities of Gaussian mixture distribution

Geodesics

Figure: Geodesic of Gaussian mixtures; left: in the Wasserstein statistical manifold; right: in the whole density space

イロト イヨト イヨト イヨト

э

Natural gradient

Consider the Gaussian mixture fitting problem: given N data points $\{x_i\}_{i=1}^N$ obeying the distribution $\rho(x; \theta^1)$ (unknown), we want to infer θ^1 by using these data points, which leads to a minimization as:

$$\min_{\theta} W_2^2\left(\rho(\cdot;\theta), \frac{1}{N}\sum_{i=1}^N \delta_{x_i}(\cdot)\right)$$

We perform the following five iterative algorithms to solve the optimization problem:

Gradient descent (GD): $\theta_{n+1} = \theta_n - \tau \nabla_{\theta} (\frac{1}{2} W^2)|_{\theta_n}$ GD with diag-preconditioning: $\theta_{n+1} = \theta_n - \tau P^{-1} \nabla_{\theta} (\frac{1}{2} W^2)|_{\theta_n}$ Wasserstein GD: $\theta_{n+1} = \theta_n - \tau G_W(\theta_n)^{-1} \nabla_{\theta} (\frac{1}{2} W^2)|_{\theta_n}$ Modified Wasserstein GD: $\theta_{n+1} = \theta_n - \tau (\bar{G}_W(\theta_n))^{-1} \nabla_{\theta} (\frac{1}{2} W^2)|_{\theta_n}$ Fisher-Rao GD: $\theta_{n+1} = \theta_n - \tau G_F(\theta_n)^{-1} \nabla_{\theta} (\frac{1}{2} W^2)|_{\theta_n}$

Optimization results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

- Wasserstein metric tensor in parametric statistical models
- Wasserstein natural gradient accelerates Wasserstein metric modeled optimization
- interplay between density evolution (Eulerian) and particle moving (Lagrangian)

Thanks for your attention!