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Partial Differential Equations (PDEs)

PDEs widely employed in scientific computing and scientific ML

e.g., flows, waves, transport of data and uncertainty, ...

Problem of focus: Numerical methods for PDEs/inverse problems

Figure credited to Google online search
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Numerical Methods for PDEs and Inverse Problems

Key step: Construct finite dimensional numerical approximations

Challenges:

• FEMs not specialized enough to solve multiscale PDEs
• NNs flexible but may sometimes be too complicated to analyze

Our focus: Addressing the above challenges by advancing
multiscale and Gaussian processes methods
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Outline

1 Exponentially Convergent Multiscale Finite Element Methods

2 Gaussian Processes Framework for PDEs and Inverse Problems

3 Further Direction
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Multiscale Problems

Figure: Heterogeneity and high frequency

Figure credited to Google online search
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Mathematical Setup

Model problem: Heterogeneous Helmholtz’s equation

−∇ · (A∇u)− k2u = f, in Ω, w/ boundary conditions

(subsurface flows, diffusions, elasticity, waves)

Mathematical conditions for multiscale phenomenon:

• Heterogeneity (i.e., A varies a lot spatially):

A ∈ L∞(Ω), and 0 < Amin ≤ A(x) ≤ Amax <∞

• High frequency: k2 is large

Challenges of FEMs: Need very small grid size h for accuracy
• h ≤ h⋆ ≪ 1 to resolve the heterogeneity
• h = O(1/k2) to handle the indefiniteness (known as pollution

effects) [Babuška, Osborn 2000], [Babuška, Sauter, 1997]
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Typical Ingredients of Multiscale Methods “Divide and Conquer”

Set-up: Ω = [0, 1]d

• Fine grid size h≪ 1 small
enough to resolve the physics

• Coarse grid size H

Offline: given A, solve some local problems of domain size O(H)
to get local basis functions. Assembly the stiffness matrix

• Local computation, parallelizable

Online: for any source term f , solve a global linear system with the
stiffness matrix to get coefficients of the basis functions

• Computation involves a linear system of size = the number of
local basis functions

Compared to the complexity of fine-grid FEM
• Computation involves a global linear system of size ∼ 1/hd
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Many Multiscale Methods for Constructing Local Basis Functions

Handling rough coefficients A ∈ L∞(Ω):
• Harmonic coordinates [Owhadi, Zhang 2007]

• Multiscale spectral generalized FEMs [Babuška, Lipton 2011]

• Generalized Multiscale FEM [Efendiev, Galvis, Hou 2013]

• Rough polyharmonic splines [Owhadi, Zhang, Berlyand 2014]

• Local orthogonal decomposition [Målqvist, Peterseim 2014]

• Gamblets [Owhadi 2017]

• ...

Handling large k:
• hp-FEM: [Melenk, Sauter 2010, 2011]

• Local orthogonal decomposition: [Peterseim, et al 2017]

• Wavelet-based edge multiscale FEM [Fu, Li, Craster, Guenneau 2021]

• ...
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What Constitutes An Ideal Multiscale Method?

High level parameters of a multiscale method
• H: size of coarse grid
• lH: size of local domains for computing basis functions
• m: number of basis functions in each local domain

• Let e be the error of the solution obtained by the multiscale
method

• Ideally, for a fixed H, we want small m, l and e



10/33

Our Contributions [Chen, Hou, Wang 2021,2021,2022]

Exponentially convergent multiscale FEM (ExpMsFEM)

A multiscale framework for heterogeneous Helmholtz’s equations
• Require H = O(1/k) (standard in the literature)

• Error e ≤ Cϵ exp
(
−m 1

d+1
−ϵ
)
(∥u∥H(Ω) + ∥f∥L2(Ω))

• Framework based on non-overlapped domain decomposition

• Pre-existing methods for heterogeneous Helmholtz’s equations are
at most algebraic convergence, or have accuracy floor O(H), e.g.
e = O(H),m = 1, l = O(log(1/H) log k) [Peterseim, et al 2017]

• Non-overlapped domain decomposition leads to basis functions with
smaller support and less overlapping (l is smaller). Pre-existing
methods rely on overlapped domain decomposition [Babuška, Lipton
2011].
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How Does ExpMsFEM Work?

Local Structure + Global Decomposition
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Local Structure: Helmholtz-harmonic functions

• Uk(D) := {v ∈ H1(D),−∇ · (A∇v)− k2v = 0 in D}/R
• Energy norm: ∥v∥2H(D) := ∥A1/2∇v∥2L2(D) + ∥kv∥2L2(D)

Theorem [Chen, Hou, Wang 2021]

Let H⋆ = O(1/k). Consider the restriction operator

R : (Uk(ω
∗), ∥ · ∥H(ω∗)) → (Uk(ω), ∥ · ∥H(ω))

such that Rv = v|ω. Then, its singular values σm(R)
decays nearly exponentially fast:

σm(R) ≤ Cϵ exp
(
−m 1

d+1
−ϵ
)

for some Cϵ independent of k,H and m

• Pre-existing result for A-harmonic functions [Babuška, Lipton 2011]

• Key of analysis: H⋆ = O(1/k) ⇒ the Helmholtz operator is
locally positive definite and elliptic techniques can apply
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Consequence: if H⋆ = O(1/k), then

• For any u ∈ Uk(ω
∗), there are m functions vj , 1 ≤ j ≤ m, s.t.

inf
cj

∥u−
m∑
j=1

cjvj∥H(ω) ≤ Cϵ exp
(
−m 1

d+1
−ϵ
)
∥u∥H(ω∗)

• vj are left singular vectors of the restriction operator R

Sanity check
1 SVD: R =

∑
j σjvj ⊗ wj where vj ∈ Uk(ω) and wj ∈ Uk(ω

⋆)

2 Ru =
∑

j σjvj⟨u,wj⟩
3 Ru−∑m

j=1 σjvj⟨u,wj⟩ =
∑

j>M σjvj⟨u,wj⟩
4 ∥u−∑m

j=1 σjvj⟨u,wj⟩∥H(ω) ≤ σm+1∥u∥H(ω⋆)

Summarize the property: Restrictions of Helmholtz-harmonic
functions are of low approximation complexity
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Global Decomposition in 2D

1. Decomposition using indicator funcs

u =
∑
i

1Tiu

=
∑
i

1Tiu
h
Ti

+
∑
i

1Tiu
b
Ti︸ ︷︷ ︸

small and locally computable®−∇ · (A∇uhTi
)− k2uhTi

= 0, in Ti
uhTi

= u, on ∂Ti®−∇ · (A∇ubTi
)− k2ubTi

= f, in Ti
ubTi

= 0, on ∂Ti

Goal: write
∑

i 1Tiu
h
Ti

as local restrictions of Helmholtz-harmonic
functions
2. Focus on edge functions∑

i

1Tiu
h
Ti

= Qũh

• where Q : H1/2(EH) → H1(Ω) is the
Helmholtz-harmonic extension operator
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Global Decomposition

3. Edge localization

ũh = IH ũ
h︸ ︷︷ ︸

Nodal interp.

+ (ũh − IH ũ
h)︸ ︷︷ ︸

Decoupled to each edges

• IH ũ
h =

∑
n u(xn)ψn spanned by

nodal basis funcs

4. Oversampling

(ũh − IH ũ
h)|e = (u− IHu)|e

=
m∑
j=1

cj,eṽj,e +O
(
exp
(
−m 1

d+1
−ϵ
))

+ (ubωe
− IHu

b
ωe
)|e︸ ︷︷ ︸

small and locally computable
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ExpMsFEM in 2D

Theorem [Chen, Hou, Wang 2021]

The following holds for the solution u of Helmholtz’s equation

u =

Ñ∑
n

bnψn +
∑
e

m∑
j=1

cj,evj,e

é
+

(∑
i

1Tiu
b
Ti

+
∑
e

Q(ubωe
− IHu

b
ωe
)|e
)

+O
(
exp
(
−m 1

d+1
−ϵ
)
(∥u∥H(Ω) + ∥f∥L2(Ω))

)

• Line 1 consists nodal, edge basis functions
• O(m/H2) number of local basis functions, obtained by solving

local spectral problems
• bn, cj,e can be computed by Galerkin’s methods

• Line 2 consists fine scale bubble terms are locally computable
• Obtained by solving local linear systems
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Numerical Experiments

Heterogeneous Helmholtz’s equation:

−∇ · (A∇u)− k2u = f, in Ω = [0, 1]2

• Wavenumber k = 25

• A(x) = |ξ(x)|+ 0.5 where ξ(x) is piecewise linear functions
• nodal values drawn from unit Gaussian random variable
• piecewise scale: 2−7

• Source term f(x1, x2) = x41 − x32 + 1

• Boundary condition: mixed
• one side Dirichlet, one side Neumann, two sides Robin
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Visualization of the Field
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Numerical Experiments: Helmholtz’s Equation

Quadrilateral mesh
• Fine mesh size h = 2−10, coarse mesh size H = 2−5

Accuracy of ExpMsFEM’s solution
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Note: (2m+ 1)/H2 number of local basis functions are used. The
accuracy is calculated by comparing to the fine mesh FEM solution.
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Outline

1 Exponentially Convergent Multiscale Finite Element Methods

2 Gaussian Processes Framework for PDEs and Inverse Problems

3 Further Direction
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Specialization and Flexibility of Solvers

• Specialized solvers effective for their targeted class of problems
• Design very accurate basis functions for approximation

• Real world problems are more fruitful and complicated

• Inverse problems

• Material design

• Multi-physics

• Data assimilation

• ...

Flexible numerical framework for many applications?
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Scientific Machine Learning Automation

Model based v.s. data driven methods

“Apply machine learning and statistical inference to automate
scientific computing”

(PINNs, operator learning, ...)

Figure from Yiping Lu’s slides, with some new edits by the presenter
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Typical Ingredients of ML Based Methods for PDEs

“Data” :
• PDE information: e.g., −∆u(xi) = f(xi)

• Physical measurements: e.g., u(xi) = yi in inverse problems

ML model:
• Neural networks
• Gaussian processes and kernel methods
• Tensor format
• ...
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Our Focus: Gaussian Processes for PDEs and Inverse Problems

Advantages:
• Interpretable, amenable to analysis, and built-in UQ
• Connect to radial basis funcs methods in numerical analysis
• Connect to neural network methods in the infinite-width limit

Many related works in the literature
• [Poincaré 1896], [Palasti, Renyi 1956], [Sul’din 1959], [Sard 1963], [Kimeldorf,

Wahba 1970], [Larkin 1972], [Traub, Wasilkowski, Woźniakowski 1988],

[Diaconis 1988], [Schaback, Wendland 2006], [Stuart 2010], [Owhadi 2015],

[Hennig, Osborne, Girolami 2015], [Cockayne, Oates, Sullivan, Girolami 2017],

[Raissi, Perdikaris, Karniadakis 2017], ...

What’s new?
• A rigorous mathematical framework for

nonlinear PDEs [Chen, Hosseni, Owhadi, Stuart 2021]
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An Optimization Problem as the MAP Estimator of Gaussian Processes

The “maximum a posterior” (MAP) estimator

minimize
u∈U

∥u∥K
constraint P (x, u,∆u, ...) = 0 at some x1, ..., xM

• Constraint: “Data” (any PDE or measurement of u)
• P can be nonlinear
• e.g., P (x, u,∆u, ...) = −∆u+ u3 or P (x, u,∆u, ...) = u or

combination of both

• Notation: kernel function K : Ω× Ω → R
• Corresponding RKHS U with norm ∥ · ∥K
• Formally, ∥u∥2K = [u,K−1u]L2 where Kv =

∫
K(·, y)v(y)dy

• In which sense it is MAP?
• Formally, density of u ∼ GP(0,K) is ∝ exp

(
− 1

2∥u∥2K
)

• Formally, − log ρ(u) = 1
2∥u∥2K + C

Equivalent finite dimensional optimization problem
• Nonlinear representer theorem:

The optimizer u†(x) ∈ span{K(x, xm),∆xmK(x, xm), ...

for 1 ≤ m ≤M}

• Substitute these basis functions into the problem to getminimize
z∈RN

zTΘ−1z

constraint F (z) = 0

• Θ dense kernel matrix with entries
K(xm, xn),∆xm

K(xm, xn), ...

• F encodes the corresponding
finite-dim constraint

• Solved by sequential quadratic programming
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• Θ dense kernel matrix with entries
K(xm, xn),∆xm

K(xm, xn), ...

• F encodes the corresponding
finite-dim constraint

• Solved by sequential quadratic programming
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How Does It Perform?

1 Numerical experiments for solving nonlinear PDEs

2 Numerical experiments for Darcy flow inverse problems

3 Theoretical guarantee
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Nonlinear Elliptic Equation Example

The Laplacian equation with cubic nonlinearity:®
−∆u(x) + u(x)3 = f(x), ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω

minimize
u∈U

∥u∥K
constraint −∆u(xint

m ) + u(xint
m )3 = f(xint

m ) for some xint
m ∈ Ω

u(xbd
m ) = g(xbd

m ) for some xbd
m ∈ ∂Ω
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Numerical Experiments: Nonlinear Elliptic Equation

• Kernel: K(x,y;σ) = exp
(
− |x−y|2

2σ2

)
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Figure: Ndomain = 900, Nboundary = 124

• Solution is smooth, well approximated by Gaussian kernels



26/33

How Does It Perform?

1 Numerical experiments for solving nonlinear PDEs

2 Numerical experiments for Darcy flow inverse problems

3 Theoretical guarantee



27/33

Darcy Flow Example

Darcy Flow inverse problems

• Equation: −∇ · (exp(a)∇u) = 1 in Ω, and u = 0 on ∂Ω
• Unknown functions a, u
• Measurement data u(xdata

j ) = oj +N (0, γ2), 1 ≤ j ≤ Ndata

minimize
u,a

∥u∥2K + ∥a∥2K +
1

γ2

Ndata∑
j=1

|u(xdata
j )− oj |2

constraint −∇ · (exp(a)∇u)(xint
m ) = 1 for some xint

m ∈ (0, 1)2

u(xbd
m ) = 0 for some xbd

m ∈ ∂(0, 1)2
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Numerical Experiments: Darcy Flow

• Kernel K(x,x′;σ) = exp
(
− |x−x′|2

2σ2

)
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Figure: Ndomain = 400, Nboundary = 100, Ndata = 50
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How Does It Perform?

1 Numerical experiments for solving nonlinear PDEs

2 Numerical experiments for Darcy flow inverse problems

3 Theoretical guarantee
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Convergence Theory for Solving PDEs

Convergence of the minimizer u† to the truth u⋆{
min
u∈U

∥u∥K
s.t. PDE constraints at {x1, . . . ,xM} ∈ Ω

Asymptotic convergence [Chen, Hosseni, Owhadi, Stuart 2021]

Assumptions:
• K is chosen so that

• U ⊆ Hs(Ω) for some s > s∗ where s∗ = d/2 + order of PDE
• u⋆ ∈ U

• Fill distance of {x1, . . . ,xM} → 0 as M → ∞
Then as M → ∞, u† → u⋆ pointwise in Ω and in Ht(Ω) for
t ∈ (s∗, s)

• Convergence rates when stability of the PDE is further
assumed [Batlle, Chen, Hosseni, Owhadi, Stuart 2023]
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Other Numerical Examples for Solving Nonlinear and Parametric PDEs

Reported in [Chen, Hosseni, Owhadi, Stuart 2021], [Batlle, Chen, Hosseni,

Owhadi, Stuart 2023]

• Burgers’ equations: ut + uux = νuxx

• Regularized Eikonal equations: |∇u|2 = f2 + ϵ∆u

• Hamilton-Jacobi equations: (∂t +∆)V (x, t)− |∇V (x, t)|2 = 0

• Parametric elliptic equations: ∇x · (a(x, θ)∇xu(x, θ)) = f

• Monge-Amperè equations: det(D2u) = f

Overall observations:
• The method is fast and achieves high accuracy with 103 − 104

collocation points, if the solution is pretty smooth and
Matérn/Gaussian kernels are chosen
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Efforts for Further Improvements

Adapt the model:
• Numerous approaches for

learning the kernel to adapt
to the problem

• Challenges: nonlinear
procedure, limited theory

Hierarchical kernel learning
First rigorous analysis of large
data consistency and implicit bias
for kernel flow algorithms for a
Matérn-like model. Investigation
of robustness to model
misspecification
[Chen, Owhadi, Stuart 2020]

Sample more data:
• With enough data, any

reasonable kernel functions
can approximate well

• Challenges: dense kernel
matrices with derivatives

Sparse Cholesky factorization
A new multiscale ordering of
columns (with derivative entries)
leading to approximately sparse
Cholesky factors. Achieve the
state-of-the-art near-linear
complexity
[Chen, Owhadi, Schäfer 2023]
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Outline

1 Exponentially Convergent Multiscale Finite Element Methods

2 Gaussian Processes Framework for PDEs and Inverse Problems

3 Further Direction
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Further Directions and Future Work

High dimensional scientific computing:
• e.g., applications in Chemistry
• Very different to low dimensional PDE setting
• Use randomness to balance exploration and exploitation in

high dimensional Gaussian process and kernel methods
[Chen, Epperly, Tropp, Webber 2022]

Uncertainty quantification and posterior sampling:
• Fully exploit the potential of a Bayesian statistical framework
• Efficient numerical algorithm for sampling?

[Chen, Huang, Huang, Reich, Stuart 2023]
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Summary

Multiscale Numerical Methods:
• Construct specialized basis functions adapted to the equation
• Local structures and global decomposition for Helmholtz’s

equation (exponential convergence)

Statistical Numerical Methods:
• Flexible Gaussian process framework for general PDE problems
• Convergence, adaptivity, and scalable algorithms for Gaussian

process and kernel methods in low and high dimensions
• Further direction: posterior sampling

Goal: enhance specialized and flexible numerical methods rigorously
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