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One page’s overview

Context: Supervised learning

Approach: Gaussian process regression / kernel methods

Question of focus: How to select kernels based on data

Algorithms in use: Empirical Bayes and Kernel Flow

Achieved: Consistency and selection bias for a Matérn model
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Gaussian process regression (GPR)

Supervised learning: recover u† : D ⊂ Rd → R from

yi = u†(xi), 1 ≤ i ≤ N (Noiseless data)

GPR solution:

u(·, θ,X ) = E [ξ(·, θ) | ξ(X , θ) = u†(X )]

= Kθ(·,X )[Kθ(X ,X )]−1u†(X )

(Depend on kernel Kθ, data set X , and truth u†)

Compressed notation: (θ ∈ Θ is a hierarchical parameter)

GP : ξ(·, θ) ∼ N (0,Kθ), where Kθ : D ×D → R

X = {x1, ..., xN}, and u†(X ) ∈ RN ,Kθ(X ,X ) ∈ RN×N

Kθ(·,X ) : D → RN , and u(·, θ,X ) : D → R
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What’s the problem?

Any θ ∈ Θ, gets an interpolated solution on X
(zero training loss)

But, for out-of-sample/generalization error, how to pick a good θ?

We need to do model selection — learn a good hierarchical parameter
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Roadmap of this talk

1 Empirical Bayes’ approach

2 Approximation-theoretic approach

3 Comparison of their consistency as # of data →∞, and beyond
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Bayes’ solution

Put a prior on θ, and u†|θ ∼ N (0,Kθ) — then calculate the posterior

Empirical Bayes (EB) with uninformative prior:

θEB(X , u†) = argmin
θ∈Θ

LEB(θ,X , u†)

LEB(θ,X , u†) = u†(X )T[Kθ(X ,X )]−1u†(X ) + log detKθ(X ,X )

Maximum Likelihood Estimate!

The EB solution: just pick θEB(X , u†)
depend on data set X , truth u† (and the prior)
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Approximation-theoretic approach

Why θ, u† have a prior distribution? — may be brittle to
misspecification

Go straightforward: set a target cost d, and optimizeθ d(u†, u(·, θ,X ))

Problem: u† not available — solution: approximation

min
θ

d(u(·, θ,X ), u(·, θ, πX )) (One example)

π: subsampling operator (similar to cross-validation)
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Kernel Flow

A specific choice of d: [Owhadi, Yoo 2018 & 2020], [Hamzi, Owhadi 2020]

θKF(X , πX , u†) = argmin
θ∈Θ

LKF(θ,X , πX , u†)

LKF(θ,X , πX , u†) =
‖u(·, θ,X )− u(·, θ, πX )‖2Kθ

‖u(·, θ,X )‖2Kθ

where

π: a subsampling operator, so πX ⊂ X
‖ · ‖Kθ : RKHS norm determined by Kθ

A kernel is good, if subsampling data does not influence solution much.
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Consistency

How do θEB and θKF behave, as # of data →∞?

We answer the question for some specific model of u†, θ and X

Yifan Chen, Caltech Empirical Bayes and Kernel Flow September 5, 2020 9/16



Consistency of Hierarchical Hyperparameter Learning arXiv: 2005.11375

Set-up and theorem

Domain: D = Td = [0, 1]dper

Lattice data X q = {j · 2−q, j ∈ Jq}
where Jq = {0, 1, ..., 2q − 1}d, # of data: 2qd

Kernel Kθ = (−∆)−t, and θ = t

Subsampling operator in KF: πX q = X q−1

Theorem (Chen, Owhadi, Stuart, 2020)

Informal: if u† ∼ N (0, (−∆)−s) for some s, then as q →∞,

θEB → s and θKF → s− d/2
2

in probability

Analysis based on multiresolution decomposition and uniform
convergence of random series
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Experiments

d = 1, s = 2.5, # of data N = 29, mesh size 2−10
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Figure: Left: EB loss; right: KF loss

Patterns in the loss function (our theory can predict!)
EB: first linear, then blow up quickly
KF: more symmetric
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How are the limits s (= 2.5) and s−d/2
2

(= 1) special?

What is the implicit bias of EB and KF algorithms?

We will look at their L2 population errors
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Experiment 1

# of data: 2q; compute Eu†‖u†(·)− u(·, t,X q)‖2L2
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Figure: L2 error: averaged over the GP

s−d/2
2

(= 1) is the minimal t that suffices for the fastest rate of L2 error
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Experiment 2

# of data: 2q, q = 9; compute Eu†‖u†(·)− u(·, t,X q)‖2L2
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Figure: L2 error: averaged over the GP, for q = 9

s (= 2.5) is the t that achieves the minimal L2 error in expectation
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Takeaway messages

For Matérn-like kernel model, EB and KF have different selection bias
EB selects the t that achieves the minimal L2 error in expectation
KF selects the minimal t that suffices for the fastest rate of L2 error

More comparisons between EB and KF in our paper
Estimate amplitude and lengthscale in N (0, σ2(−∆ + τ2I)−s)
Variance of estimators
Robustness to model misspecification (important!)
Computational cost

Hierarchical parameter learning: via Bayes or approximation-theoretic?

Yifan Chen, Caltech Empirical Bayes and Kernel Flow September 5, 2020 15/16



Consistency of Hierarchical Hyperparameter Learning arXiv: 2005.11375

Thank you!
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