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PROBABILISTIC FORECASTING

Problem. Forecasting future states of a dynamical system given complete or
partial information about current states is ubiquitous in science and engineering

Set-up. Discrete time-series {z,. }.., with each =, € R containing, e.g., daily
weather measurements or video frames, acquired every lag-time 7 > 0. Succes-

sive observations come from joint PDF p(zy,, (k1 1y.) With T, 1), ~ p.(-[Tg,)

Stochastic Interpolants. Let x4y and z; denote the current and forecasting state.

We Introduce the stochastic interpolant
Is — Qg + 6S$1 + OSWS (1)

where (zg, 1) ~ p(zg,x1) and W = (W) 017 IS @ Wiener process with W L

GENERATION WITH STOCHASTIC INTERPOLANTS

Let b (x, zy) be the unique minimizer of
Ly[b,] = /01 E[[b,(1, %) — Ry|*ds, (2)
where E denotes an expectation over (x,, ;) ~ p and W with (x4, x,) L W,
R, = daq+ B, + 0 W, (3)
Then the solutions to the SDE
dX,=b,(X,,xp)ds+o,dW, X._,=x,, (4)
satisfy Law(X,) = Law(I,|zy), V(s,z4) € [0,1] x RE Thus X,_; ~ p.(+|zg).

KEY OBSERVARIONS

1. Choose the base distribution z, as the conditioning information
2. SDE maps a point X,_, = x4 to a density X,_; ~ p.(-|zy); ODEs cannot
3. Loss function is simulation-free since W, < Vvsz with z ~ N(0, Id)

GENERALIZATIONS WITH TUNABLE DIFFUSION

Given any g € C°([0, 1]) with mild assumptions, define
bi(x, ) = by(x,20) + 5(95 — 03)V log py(2z,) (5)
where p (x|x,) is the PDF of X, < I |xy. Then, solutions of
dX? =bd(XI xg)ds + g, dW,, X7, =z, (6)
satisfy Law(X?) = Law(X,) = Law(I |z,) for all (s,z,) € [0,1] x R%. And
Vlog py(afzg) = A [Bbs(2, ) — g, 20)] (/)

where As — [SO-S(/BSO-S - sds)]_l and CS(CIZ, 330) — ﬁsx + <5sas - .sas)xﬂ

FUNDAMENTAL FACT

We can estimate b first and then adjust both the noise amplitude g, and the

drift b9 a-posteriori without having to retrain b.
KL OPTIMIZATION AND FOLLMER PROCESSES

Question. Any optimal design of the diffusion coefficient g7

Consider the KL between the path measure of X9 = (Xg)sE[O,l] (solving SDE (6)),
and the path measure of approximation X9 = (Xg)sem,l] obtained through an

estimate b of b:
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Claim. Equation 8 is minimized if we set g, = ¢© with

1/2

d
o = [2502L10g 2 9)
ds SO,
THEOREM
I:

If 6,/(1/s0,) is non-decreasing, then the process X9 is a Féllmer process.

= Follmer processes solve the Schrodinger bridge problem when one
endpoint Is a point mass, offering an entropy-regularized solution to
optimal transport.

= Usually defined by minimizing KL against the Wiener process subject to
constraints on the endpoints

= Qur result offers a generalization and new interpretation of Follmer as
the minimizer of the KL of the exact forecasting process from the
estimated one, which is more tailored to statistical inference.

FORECASTING 2D STOCHASTIC NAVIER STOKES EQUATIONS

Setting : dw + v - Vwdt = vAwdt — awdt + edn on T? where w is the vorticity, v
s the velocity, dn is white-in-time random forcing on a few Fourier modes, and
v =10"%,a = 0.1,e = 1. Goal is to forecast w,_ ., observing w,
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Figure 1. Probabilistic forecasting with lag = = 2 (autocorrelation 10%). Resolution 128 x 128, using 200K data
pairs for training 2ZM-parameter-Unet for 50 epochs

The effect of tuning g. We examine the total enstrophy statistics

e Figure: The 1D conditional
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0.15} given a fixed initial vorticity field w, and

T = 1. Here we compare between the
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truth, generated samples via SDEs with
o.dW, via SDE with g-dW, which

corresponds to a Follmer process, and

0.051

0.00r
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KL: truth versus generation
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VIDEO FORECASTING

Setting. Video generation on CLEVRER, which features moving geometric ob-
Jects and their collisions. Following previous work, RIVER, the 128x128 videos
are mapped to 16x16 with a VQGAN. We model the latent space with the inter-
polant. During generation, we condition on 2 real frames and generate 14.
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Figure 2. Top row: Real trajectory. Second row: Generated trajectory. A new, red cube enters the scene. Third
row: Real trajectory. Fourth row: Generated trajectory. A new green cube enters the scene, and collision physics
is respected (green ball hits red cube).

Results. The model forecasts video completions, generating new objects and
respecting physics (last row, model generates a new green cube in the top left
of the scene, which collides realistically with existing objects).

KTH CLEVRER
Method 100k 250k 100k 250k

RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 39.13 54.7 39.31

Auto-enc. 33.45 33.45 2.79 2./79

Table 1. FVVD computed on 256 test set videos, with the model generating 100 completions for each video.
Results are reported for 100k grad steps and 250k. The auto-enc represents the FVD of the pretrained
encoder-decoder vs the real data. It serves as a bound on the possible model performance, as the modeling is
done in the latent space of a pre-trained VQGAN.



Yifan Chen


