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Problem. Forecasting future states of a dynamical system given complete or
partial information about current states is ubiquitous in science and engineering

Set‐up. Discrete time‐series \ԧֆᇑ^ֆ୮඾ with each ԧֆᇑ ୮ බտ containing, e.g., daily
weather measurements or video frames, acquired every lag‐time ᅽ � �. Succes‐
sive observations come from joint PDF ᅻ	ԧֆᇑ
 ԧ	ֆ�φ
ᇑ
 with ԧ	ֆ�φ
ᇑ ୽ ᅻվ	ੁ]ԧֆᇑ

Stochastic Interpolants. Let ԧЈ and ԧφ denote the current and forecasting state.
We introduce the stochastic interpolantӾ֎ � ᅫ֎ԧЈ � ᅬ֎ԧφ � ᅼ֎Ԍ֎ (1)

where 	ԧЈ
 ԧφ
 ୽ ᅻ	ԧЈ
 ԧφ
 and Ԍ � 	Ԍ֎
֎୮<ЈӴφ> is a Wiener process with Ԍ શ	ԧЈ
 ԧφ
. ᅫ
 ᅬ
 ᅼ ୮ Ӹφ	<�
 �>
 satisfy ᅫЈ � ᅬφ � � and ᅫφ � ᅬЈ � ᅼφ � �.
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Let ԑ֎	ԧ
 ԧЈ
 be the unique minimizer ofԁս< ࣞԑ֎> � ௷φЈ ඩॅ]ԑࣞ֎	Ӿ֎
 ԧЈ
 ਷ ԇ֎]ϵ>ԓԢ
 (2)

where ඩ denotes an expectation over 	ԧЈ
 ԧφ
 ୽ ᅻ and Ԍ with 	ԧЈ
 ԧφ
 શ Ԍ ,ԇ֎ � ᅫ֎ԧЈ۾ � ᅬ֎ԧφ۾ � �֎ᅼ֎Ԍ۾ (3)

Then the solutions to the SDEԓԍ֎ � ԑ֎	ԍ֎
 ԧЈ
ԓԢ � ᅼ֎ԓԌ֎
 ԍ֎�Ј � ԧЈ
 (4)

satisfy Law	ԍ֎
 � Law	Ӿ֎]ԧЈ

 ૞	Ԣ
 ԧЈ
 ୮ <�
 �> ੎ බտ. Thus ԍ֎�φ ୽ ᅻվ	ੁ]ԧЈ
.
ȗȇȚ ȨȐȃȇȀȒȷȀȄȨȤȃ

1. Choose the base distribution ԧЈ as the conditioning information
2. SDE maps a point ԍ֎�Ј � ԧЈ to a density ԍ֎�φ ୽ ᅻվ	ੁ]ԧЈ
; ODEs cannot
3. Loss function is simulation‐free sinceԌ֎ տ� అԢԩ with ԩ ୽ N	�
 Id
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Given any Ԗ ୮ ӸЈ	<�
 �>
 with mild assumptions, defineԑւ֎	ԧ
 ԧЈ
 � ԑ֎	ԧ
 ԧЈ
 � φϵ	Ԗϵ֎ ਷ ᅼϵ֎
ခ HQ; ᅻ֎	ԧ]ԧЈ
 (5)

where ᅻ֎	ԧ]ԧЈ
 is the PDF of ԍ֎ տ� Ӿ֎]ԧЈ. Then, solutions ofԓԍւ֎ � ԑւ֎	ԍւ֎
 ԧЈ
ԓԢ � Ԗ֎ԓԌ֎
 ԍւ֎�Ј � ԧЈ
 (6)

satisfy Law	ԍւ֎
 � Law	ԍ֎
 � Law	Ӿ֎]ԧЈ
 for all 	Ԣ
 ԧЈ
 ୮ <�
 �> ੎ බտ. Andခ HQ; ᅻ֎	ԧ]ԧЈ
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 ਷ Ԓ֎	ԧ
 ԧЈ
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where Ӷ֎ � <Ԣᅼ֎	 ֎ᅬ֎ᅼ۾ ਷ ᅬ֎ 
֎ᅼ۾>਷φ and Ԓ֎	ԧ
 ԧЈ
 � ᅬ֎ԧ۾ � 	ᅬ֎ ֎ᅫ۾ ਷ 
֎ᅬ֎ᅫ۾ԧЈ.

ȧȎȤȲȷȣȇȤȋȷȜ ȧȷșȋ

We can estimate ԑ first and then adjust both the noise amplitude Ԗ֎ and the
drift ԑւ a‐posteriori without having to retrain ԑ.

ȗȜ ȨȸȋȄȣȄȝȷȋȄȨȤ ȷȤȲ ȧÁȜȜȣȇȀ ȸȀȨșȇȃȃȇȃ

Question. Any optimal design of the diffusion coefficient Ԗ?
Consider the KL between the path measure ofԍւ � 	ԍւ֎
֎୮<ЈӴφ> (solving SDE (6)),
and the path measure of approximation ԍࣞւ � 	ԍࣞւ֎
֎୮<ЈӴφ> obtained through an
estimate ԑࣞ of ԑ:ӹKL	ԍւ]]ԍࣞւ
 � ௷φЈ ]� � φϵᅬ֎Ӷ֎	Ԗϵ֎ ਷ ᅼϵ֎
]ϵ�]Ԗ֎]ϵ ඩ֓Јॅ]ԑࣞ֎	Ӿ֎
 ԧЈ
 ਷ ԑ֎	Ӿ֎
 ԧЈ
]ϵॆԓԢ (8)

Claim. Equation 8 is minimized if we set Ԗ֎ � ԖF֎ withԖF֎ � ઑ�Ԣᅼϵ֎ /
/Ԣ HQ; ᅬ֎అԢᅼ֎ઑφ�ϵ

(9)

ȋȺȇȨȀȇȣ

If ᅬ֎�	అԢᅼ֎
 is non‐decreasing, then the process ԍւF is a Föllmer process.
Föllmer processes solve the Schrödinger bridge problem when one
endpoint is a point mass, offering an entropy‐regularized solution to
optimal transport.

Usually defined by minimizing KL against the Wiener process subject to
constraints on the endpoints

Our result offers a generalization and new interpretation of Föllmer as
the minimizer of the KL of the exact forecasting process from the
estimated one, which is more tailored to statistical inference.
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Setting : /ᆂ � ԥ ੁ ခᆂ/ԣ � ᅸငᆂ/ԣ ਷ ᅫᆂ/ԣ � ᅯ/ᅱ on මϵ where ᆂ is the vorticity, ԥ
is the velocity, /ᅱ is white‐in‐time random forcing on a few Fourier modes, andᅸ � ��਷ϯ
 ᅫ � ���
 ᅯ � �. Goal is to forecast ᆂ֏�ᇑ , observing ᆂ֏

Figure 1. Probabilistic forecasting with lag ᇑ � ϵ (autocorrelation φЈύ). Resolution φϵ΅ ੎ φϵ΅, using ϵЈЈլ data
pairs for training 2M‐parameter‐Unet for 50 epochs

The effect of tuning Ԗ. We examine the total enstrophy statistics
Figure: The 1D conditional
distributions of total enstrophy of ᆂ֏�ᇑ ,
given a fixed initial vorticity field ᆂ֏ andᅽ � �. Here we compare between the
truth, generated samples via SDEs withᅼ֎ԓԌ֎, via SDE with Ԗ6֎ԓԌ֎ which
corresponds to a Föllmer process, and
via ODEs with Gaussian bases

KL: truth versus generation

SDE with ᅼ֎ԓԌ֎ 8.49e‐3਻1.57e‐3
SDE with Ԗ6֎ԓԌ֎ 2.79e‐3਻9.19e‐4
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Setting. Video generation on CLEVRER, which features moving geometric ob‐
jects and their collisions. Following previous work, RIVER, the 128x128 videos
are mapped to 16x16 with a VQGAN. We model the latent space with the inter‐
polant. During generation, we condition on 2 real frames and generate 14.

Figure 2. Top row: Real trajectory. Second row: Generated trajectory. A new, red cube enters the scene. Third
row: Real trajectory. Fourth row: Generated trajectory. A new green cube enters the scene, and collision physics
is respected (green ball hits red cube).

Results. The model forecasts video completions, generating new objects and
respecting physics (last row, model generates a new green cube in the top left
of the scene, which collides realistically with existing objects).

KTH CLEVRER

Method 100k 250k 100k 250k

RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 39.13 54.7 39.31

Auto‐enc. 33.45 33.45 2.79 2.79
Table 1. FVD computed on 256 test set videos, with the model generating 100 completions for each video.
Results are reported for 100k grad steps and 250k. The auto‐enc represents the FVD of the pretrained
encoder‐decoder vs the real data. It serves as a bound on the possible model performance, as the modeling is
done in the latent space of a pre‐trained VQGAN.
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