Research Short Summary

Yifan Chen (Caltech)

yifanc96.github.io

October 28, 2021

Research main topics

- Scientific Computing: multiscale computation
 - complete information and models
- Machine Learning: Gaussian processes and kernel methods
 - missing information and recovery

Multiscale Computation

- General Goal: identify *coarse-scale* models / solutions
- Specific Example: elliptic equation (Darcy's flow)

$$-\nabla \cdot (a\nabla u) = f \tag{1}$$

Condition: $a \in L^{\infty}(\Omega)$, $f \in L^{2}(\Omega)$ for bounded Ω

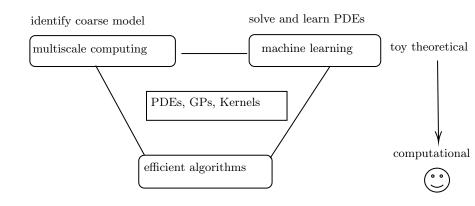
- Galerkin methods: find basis functions $\{\psi_i\}$ that capture micro
- On a grid of mesh size O(H), with $O(m/H^d)$ local basis functions, we get $O(\exp(-m^{1/(d+1)-\epsilon}))$ accuracy
 - Y. Chen, T. Y. Hou, and Y. Wang, "Exponential convergence for multiscale linear elliptic pdes via adaptive edge basis functions", Multiscale Modeling & Simulation, vol. 19, no. 2, pp. 980–1010, 2021.
 - Y. Chen, T. Y. Hou, and Y. Wang, "Exponentially convergent multiscale methods for high frequency heterogeneous helmholtz equations", arXiv preprint arXiv:2105.04080, 2021.

ML Perspective for Galerkin methods

• Using ψ_i as basis functions in solving $-\nabla \cdot (a\nabla u) = f$ is the "same" as using $\int u \cdot (-\nabla \cdot (a\nabla \psi_i))$ as information to recover u, i.e. $\phi_i = -\nabla \cdot (a\nabla \psi_i)$

$$\int u\phi_i, i \in I \quad \to \quad u$$

It becomes a GP method with covariance being the Green function


- Understand how the lengthscale of ϕ_i and localization of ψ_i influences accuracy
 - Y. Chen and T. Y. Hou, "Function approximation via the subsampled poincaré inequality", Discrete and Continuous Dynamical Systems-A, 2020.
 - Y. Chen and T. Y. Hou, "Multiscale elliptic pdes upscaling and function approximation via subsampled data", minor revision in Multiscale Modeling & Simulation, arXiv preprint arXiv:2010.04199, 2020.

ML Perspective for collocation methods

■ Solving $-\nabla \cdot (a\nabla u) = f$ by sampling some collocation points $\{x_i\}_{i\in I}$

- Linear measurements, so GP method can be applied.
 - Can be generalized to solving nonlinear PDEs and learning inverse problems
 - Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart, "Solving and learning nonlinear pdes with Gaussian processes", Journal of Computational Physics, vol. 447, p. 110 668, 2021.
- More: learning PDEs operator
 - Y. Chen, H. Owhadi, and A. M. Stuart, "Consistency of empirical bayes and kernel flow for hierarchical parameter estimation", Mathematics of Computation, 2021.

Summary

