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Sampling and MCMC

Sampling from probability distributions 7 o< exp(—V') is a classical and fundamental
challenge in scientific computing and statistics

Wide applications in y = G(8) + noise

> Statistical physics

Data

Bayes inverse problems

Filtering

| 4
» Uncertainty quantification
| 2
| 2

Markov chain Monte Carlo (MCMC) has been the workhorse for sampling problems
at a discrete m-step:  x(m + 1) = R(x(m), )

where R is some random mapping. As m — oo, x(m) approximately draws from 7
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Anisotropy and affine invariance [Goodman, Weare 2010]

Probability distributions can be highly anisotropic or ill-conditioned, such as due to
hierarchical Bayes or multiple scales in physical fields

» Ordinary MCMC may suffer from anisotropy

» Affine invariance: for any invertible affine
transformationy = ¢(x) = Ax+b

y(m +1) = R(y(m), p#)

Convergence behavior of x(m) toward 7
matches that of y (m) toward ¢#

» Concept motivated by affine invariance of
optimization algorithms: Nelder-Mead

1 —T3)° . 2 simplex [Nelder, Mead 1965] and Newton
Figure: exp(—(ilzfﬂ _ (JBH;vz) ) plex [Nelder, Mead 1965]
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Ensemble affine invariant sampler [Goodman, Weare 2010]

Affine invariance in MCMC is widely achieved by ensemble samplers
Ensemble samplers: at a discrete m-step
(x1(m+1),xe(m+1),....,xy(m+ 1)) = R(x1(m),x2(m),...,xny(m), )
Target distribution is 77V in the product space
Affine invariance: for any invertible affine transformation y = ¢(x) = Ax +b
(X1, ,XN) N (y1,---,¥N) = (Ax1 +b,..., Axy + b),
it holds that

(yl(m+ 1)7y2(m + 1)7 000 7YN(m+ 1)) - R(yl(m)ayQ(m)v 000 7yN(m)7¢#7r)
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Ensemble affine invariant sampler [Goodman, Weare 2010]

Affine invariance in MCMC is widely achieved by ensemble samplers

Stretch move sampler

>
| 4

Ensemble at step m € N (x;(m), x2(m), ...,xn(m))

Stretch move randomly selects two x;(m) and x;(m)
xi(m+1) =x;(m) + Z(x;(m) — x;(m))

1

NG
Accept this proposal with probability

where density of Z satisfies g(z) oc == for z € [a™ !, a]; recommended a = 2

o 1)
A

min {1,

Affine invariant since based on relative locations
Used routinely in Bayesian applications: emcee package (>10k citations)
[Foreman-Mackey, Hogg, Lang, Goodman 2013]
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Challenges in high dimensions

Affine-invariant ensemble samplers are reported to behave well for moderate dimensions
but suffer from higher dimensions (e.g. d > 50) [Huijser, Goodman, Brewer 2015]

“Ensemble methods are doomed to fail in high dimensions” [Carpenter 2017 (blog)] J

» high-dimensional distributions typically concentrate on thin shells

» interpolation or extrapolation between two points in the stretch move—as well as in
many other ensemble samplers—is unlikely to fall within this shell

» small stepsizes must be used!

> the samplers effectively “devolve into random walks with poorly biased directional
choices”
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This work: New affine invariant ensemble samplers and their dimensional scaling

An ensemble side move sampler with better proposal in high dimensions
(derivative-free affine invariant samplers)

» random walk scaling of stepsize d—'/2 for Gaussian targets

» outperform stretch move by a factor of two or more in autocorrelation time

Affine invariant ensemble Hamiltonian Monte Carlo
(derivative-based affine invariant samplers)

> better scaling of stepsize d~1/4 for Gaussian targets

» can outperform derivative-free ensemble samplers and HMC by order of magnitude
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Basic ensemble side move sampler (parallel version in later slides)

Side move sampler
> Ensemble at step m € N: (x1(m), x2(m), ..., xn(m))
» Side move randomly selects one x;(m) and two distinct x;(m), xi(m) # x;(m)

Xi(m + 1) = x4(m) + o(x;(m) — xx(m))§, &~ N(0,1)
> Accept this proposal with probability

m(x;(m+ 1))

m(xi(m))

}

min {1,

Connected to existing samplers: differential evolution and walk move (later slides)
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[llustrations of stretch and side moves

Left: stretch move to a four-pointed star
Middle: side move to a five-pointed star

Xk
x]'. . xj.
xl-. Xi ’\*,
+/

Xi

Xk

Right: one demo for both moves, for a ring-shaped distribution

Intuition: Side move may align better with the tangential directions J
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Connection to existing ensemble samplers

Connection to differential evolution MCMC [Ter Braak 2006]
xi(m+1) =x;(m) + v(x;(m) —xk(m)) + o

where v, o are scalars and & ~ N (0, I5xq)

Connection to walk move [Goodman, Weare 2010]: select a subset S of particles (with
mean myg) different from x;(m). With i.i.d. £; € N(0, 1), the proposal is

xi(m+1) =x; \/‘?Z xj(m) — mg)&;
JES

When | S| = 2, walk move is equivalent to side move with a specific step size since

JF DGt m) = ms)éy = = ey m) x4 (m)) € )

JES

for § = {x;,x,} and {; — & ~ N(0,2)
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Analysis of dimensional scaling for Gaussian targets

Proposition
Assume that x;,x;, x;;, are independent draws from 7(x) o exp(—3x”x),x € R%:
> For side move, X;(m + 1) = x;(m) + o(x;(m) — xx(m))¢, if o = %, then

lim [E[acceptance] = E[min{l,exp(—a2§2 = \/§a£z)}] >0
d—oo

where £ ~ N(0,1) is independent of z ~ N (0, 1)

> For stretch move, %;(m + 1) = x;(m) + Z(x;(m) — x;(m)), ifa = 1 + 7, then
dlim E[acceptance] = E[min{1, exp(—gﬂ2U2 = \/gﬁUz) H>0
—00

where U ~ Unif[—1, 1] is independent of z ~ A/(0, 1)

» Random walk type scaling of stepsize: o and a — 1 ~ d—1/2

Celebrated results for single-chain MCMC [Gelman, Gilks, Roberts 1997]
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Optimize the expected squared jump distance (ESJD)
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ESJD in one iteration:

[Pasarica, Gelman 2010]

Efflxi(m + 1) — xi(m)|3]

Optimize over stepsize:
» For side move

., 1687

g = —F

Vd

» For stretch move

2.151
o —1~ —"—"—
Vid
Optimal ESJD:
side move > stretch move
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Implementation: Parallel ensemble side move

Split ensemble approach [Foreman-Mackey, Hogg, Lang, Goodman 2013]
» Divide the ensemble into two groups:
SO = {x, o XN/2 1 S = {xXn/2415 XN}

> At each time step, for each particle in S(©), we randomly select two particles from
the complementary set SV and perform the side move, applying the Metropolis
accept-reject criterion

» Then, we follow the same procedure for particles in s, selecting particles from the
complementary set S(%) to form the side moves and perform Metropolis

> [terate the above two steps

This approach preserves the correct detailed balance condition
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Test criterion: integrated autocorrelation time in the stationary phase

Ensemble samplers generate sequences (x;(m), ...,xy(m)) for1 <m < M

> We estimate the observable A = E*~7[f = [ f(x)7(x)dx via

A Lo (1v
.= M;F(xl(m), o xy(m)) = Mmz::l (N;f(Xi(m))>

> At the stationary phase, for large M, the variance of the estimator satisfies

Var(A,) ~ %Varxl""’xNN”N [F(x1, .., XN)] = —% Var*™7[ f(x)]

NM

where 7, is the integrated autocorrelation time 7. = ,ff:o_oo Ccee((%l)) with the
autocovariance function defined as
Ce(m) = lim Cov[F(xi(m'),....,xn(m)), F(xi(m +m'),....xy(m +m'))]
m/—oo

The autocorrelation function at lag m is the ratio Coee(gg))
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Numerical experiments on high dimensional Gaussians

Target: Gaussian distributions in d dims

Scaled Autocorrelation

Figure: Scaled autocorrelation function for 1d position observable; Scaled lag = original lag/dim x4
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This implies the O(d) scaling of autocorrelation function and autocorrelation time
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Discussions
Both ensemble stretch and side moves are affine invariant and derivative free

» Optimal scaling of stepsize parameters ~ d—1/2

» Side move outperforms stretch move in ESJD, and autocorrelation time in practice
(more numerical examples at the end)

> still, bottleneck of O(d) autocorrelation time: intrinsic to random walk scaling
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Derivative-based samplers have been shown to scale better with dimension

> Metropolized Langevin stepsize ~ d~1/3 [Roberts, Rosenthal 1998]

» Hamiltonian Monte Carlo stepsize ~ d—1/4 [Beskos, Pillai, Roberts, Sanz-Serna, Stuart 2013]
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Discussions
Both ensemble stretch and side moves are affine invariant and derivative free

» Optimal scaling of stepsize parameters ~ d—1/2

» Side move outperforms stretch move in ESJD, and autocorrelation time in practice
(more numerical examples at the end)

> still, bottleneck of O(d) autocorrelation time: intrinsic to random walk scaling

Derivative-based samplers have been shown to scale better with dimension

> Metropolized Langevin stepsize ~ d~1/3 [Roberts, Rosenthal 1998]

» Hamiltonian Monte Carlo stepsize ~ d—1/4 [Beskos, Pillai, Roberts, Sanz-Serna, Stuart 2013]

Many existing work to adapt these derivative-based samplers to anisotropy [Girolami,
Calderhead 2011], [Martin, Wilcox, Burstedde, Ghattas 2012], [Greengard 2015], [Simsekli, Badeau, Cemgil,
Richard 2016], [Leimkuhler, Matthews, Weare 2018], [Kleppe 2019], [Garbuno-Inigo, Hoffmann, Li, Stuart

2020], [Garbuno-Inigo, Niisken, Reich 2020], [Hoffman, Sountsov 2022], [Tran, Kleppe 2024], etc. a2



This work: New affine invariant ensemble samplers and their dimensional scaling

Affine invariant ensemble Hamiltonian Monte Carlo
(derivative-based affine invariant samplers)

> better scaling d—1/% of stepsize for Gaussian targets

» can outperform derivative-free ensemble samplers and HMC by order of magnitude
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Hamiltonian Monte Carlo (HMC)

For 7 o exp(—V'), HMC augments it to 7@ oc exp(—V (x) — sp” M ~'p)
» Hamiltonian dynamics ‘é—’; =M !p, %‘; = —VV(x) keep 7 invariant
» Discretization: Ly, is one leapfrog with step size h, i.e., (xx, pr) = Ln(x, p) with

h _ h
Pr2 =P~ 5 VV(x), xp=x+hM "Phj2s PrL=Php— 5 VV(xn)
» P is the momentum flip operator such that P(x, p) = (x, —p)

HMC algorithm: alternating between two steps
Sample a momentum p ~ A/ (0, M)
Propose an update (x, p) = PL}(x, p) and accept with probability

[ 1 _
prob = min{l,exp(—V(x) — §pTM p+V(x)+ §pTM 1p>}

v

Importance of tuning of M, h, n: NUTS [Hoffman, Gelman 2014], Stan [Carpenter et al. 2017], etc.
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First attempt: Covariance preconditioning using mass matrices

Attempt: The simplest idea is to set M ~! to be a covariance matrix
For the sake of parallel algorithm, we use split ensembles with two groups
S(O) :{le"'aXN/2}> S(l) = {XN/2+17"'7XN}
The joint distribution (Cov g0, Cov 4(1): empirical covariance matrices of S0 51y

N/2 N
1 1
exp| — Z(V(X’) + QpZTCovSu)pi) - Z (V(x;) + §piTC0VS<o>pi)
i=1 i=N/2+1
does not preserve the correct marginal on x;

Resolution: need to add —% log det Cov g(o) — % log det Cov (1) to the potential

Issue: particles in each group must be accepted or rejected at the same time
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Better idea: Antisymmetric preconditioning

Consider the simple joint distribution

N/2 N

exp| =) (V(Xi) + ;p?pi> - ) (V(Xi) + ;piTpi>

i=1 i=N/2+1
Key observation: The following preconditioned Hamiltonian dynamics

dx; dp;
— Bp,
at P "y
leaves the distribution invariant

= —BTVV(Xi)

This is an antisymmetric preconditioning of gradient flow

#]- 2 3

dt N ,
antisymmetric

Used in [Leimkuhler, Matthews, Weare 2018] for preconditioning underdamped Langevin
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Affine invariant ensemble HMC

> Fix particles in S(), and update particles in S(?): sample p; ~ N(0, IN/QxN/Q), run

n steps of leapfrog of the dynamics and apply Metropolis
dx; dp;

with (mg) is the mean of all particles in S()
1
Bgay = T/Z[XN/erl — Mg, ..., Xy — Mg ] € RPN/
» Fix particles in S(Y), and update particles in S(!) similarly: dynamic is now
dx; dp; )
= Bsopi, % = —BL,VV(x), N/2+1<i<N

with (m o) is the mean of all particles in S(%)

1
BS(O) = M[Xl — ms(o), ...,XN/2 — ms(o)] & ]Rd><N/2

> [terate the above two steps
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Dimensional scaling analysis of the affine invariant ensemble HMC

Proposition: Assume that x; are independent draws from m(x) o exp(—3x’x),x € R?.
If we take b = ad~'/*,n = T/h and limg o0 375 = p € [0, 1), then

Jim Elfacceptance] = E[min{1, exp (N (a’p,, a*s,))}] > 0
—00
where N (a*p,, a*o,) is Gaussian with
1 1
Ho = —25 / AMsin?(VAT)dv,(\), o, = 6 / A8 sin?(VAT)dv,(\)
Forp € [0,1), dv, () = 27r1p>\‘/ — b)X[p, (A)dA, where

b=(1—-/p)?c= (1 + /p)? and X[b,d] 1S the characteristic function of [b, c|

Moreover, the expected squared jumped distance (ESJD) for one iteration satisfies

1
lim gESJD = c € (0,00), in contrast to dlim ESID = ¢’ € (0, o) for stretch/side moves
—00

d—00
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Variant: directional side move in ensemble HMC

> Fix particles in S(!), and update particles in S(©): for 1 < i < N/2, sample

pi ~ N (0,1) and two particles x; and x;, from S run n steps of leapfrog of the

dynamics and apply Metropolis

dXi 1 dpz' 1 T
= —(x; — xX%)pi, — =———(x;— VV(x;

dt \/ﬁ(xj Xk)pi dt \/ﬁ(X] Xk) (XZ)
> Fix particles in S(¥), and update particles in S(!) similarly
> [terate the above two steps

We call the algorithm Hamiltonian side move; the previous one Hamiltonian walk move
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Variant: directional side move in ensemble HMC

> Fix particles in S(!), and update particles in S(©): for 1 < i < N/2, sample

pi ~ N (0,1) and two particles x; and x;, from S run n steps of leapfrog of the

dynamics and apply Metropolis

dx; 1 dp; 1 T
= —(xi — Xp)Piy, —— = ———(x;— VVI(x;

dt m(xj Xk)pi dt \/ﬁ(X] Xk) (XZ)
> Fix particles in S(Y), and update particles in S(1) similarly
> [terate the above two steps

We call the algorithm Hamiltonian side move; the previous one Hamiltonian walk move

Proposition: Assume that x; are independent draws from 7 (x) o exp(—%xTx),x € R4,
Let h = a < 2 independent from d, then for one iteration:

lim E[acceptance] >0, lim ESID = ¢’ € (0, 00)
d—o0 d—o0

Hamiltonian side move has the same scaling as the derivative-free side move
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Numerical experiments: anisotropic Gaussian

Target: Gaussian distributions in d dims with condition number x = 10?

Integrated Autocorrelation Time

10!

Figure: Autocorrelation time (1D position observable) versus dimension. For HMC and affine
invariant HMC (Hamiltonian walk and side moves), the total integration time is 7' = 1 and n is the

number of leapfrog steps
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Numerical experiments: anisotropic Gaussian

Target: Gaussian distributions in d = 128 dims with condition number £ = 103

acceptance autocorrelation funceval grad eval

rate time 7. or 75 per iter per iter
Stretch move 0.45 2043.6 1 o]
Side move 0.45 1000.1 1 o)
HMC: n = 10 0.57 67.8 1 11
HMC:n =2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.98 10.5 1 11
Hamiltonian walk move: n = 2 0.61 127 1 3
Hamiltonian side move: n = 10 1.00 898.2 1 11
Hamiltonian side move: n = 2 0.98 732.3 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration
time is T' = 1 and n is the number of leapfrog steps
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Numerical experiments: physical fields (discretized by finite difference with d grid points)

(u) o exp (= fy 3(Oau())? + V(u(z))dz), V(u) = (1-u?)?

Integrated Autocorrelation Time vs. Dimension

—8— Stretch Move =
~#- Side Move -
—&— HMC n=10 -
—4§— Hamiltonian Walk Move n=2 -
—¥- Hamiltonian Side Move n=2 _--

[ - referencelineo -7

=
o
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=

o
~
T

Integrated Autocorrelation Time

100k ‘ M M ‘
2?2 23 2% 2° 26
Dimension d

Figure: Autocorrelation time (integral observable fol u(z)dz) versus dimension. For HMC and
affine invariant HMC (Hamiltonian walk and side moves), the total integration timeis T = 1 and n
is the number of leapfrog steps 23/24



Discussions

» Side move: more favorable high dimensional ensemble proposal than stretch move
Nevertheless random walk scaling bottleneck applies

» Affine invariant HMC: derivative-based ensemble sampler
Antisymmetric preconditioning and much better scaling for stepsize h ~ d—1/4
Further adaptation of stepsize and integration length?

> Affine invariant Hamiltonian side move: random walk scaling but slightly better than
side move per iteration (further potential adaptation of derivative-free side moves?)

» Extension of analysis beyond Gaussians and stationary phases

» Broader invariance? Diffemorphism invariance of Fisher-Rao gradient flows and
variational inference [Chentsov 1985], [Chen, Huang, Huang, Reich, Stuart 2023, 2024], etc.
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Thank you!
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Numerical experiments: physical fields (discretized by finite difference with d grid points)

m(u) o exp (= [y 3(@eu())? + V(u(z))dz), V(u) = (1-u?)?

acceptance autocorrelation funceval grad eval

rate time 7. or 75 per iter per iter
Stretch move 0.44 3021.3 1 o]
Side move 0.44 1398.3 1 0
HMC: n = 10 0.00 — 1 1
HMC:n =2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.98 11.2 1 11
Hamiltonian walk move: n = 2 0.59 14.9 1 3
Hamiltonian side move: n = 10 1.00 902.8 1 11
Hamiltonian side move: n = 2 0.98 770.8 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration
time is T' = 1 and n is the number of leapfrog steps
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Numerical experiments: ring-shaped distributions in d dimensions

m(X) X exp (—(||x||% - 1)2/l2) ,1=0.25,d =50

acceptance autocorrelation funceval grad eval

rate time 7, or 7, per iter per iter
Stretch move 0.29 2435.4 1 0
Side move 0.45 355.4 1 o]
HMC: n = 10 0.69 20.8 1 1
HMC:n =2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.99 10.7 1 11
Hamiltonian walk move: n = 2 072 11.9 1 3
Hamiltonian side move: n = 10 1.00 354.8 1 11
Hamiltonian side move: n = 2 0.98 309.7 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration

timeis T' = 1 and n is the number of leapfrog steps
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