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Sampling and MCMC

Sampling from probability distributions π ∝ exp(−V ) is a classical and fundamental
challenge in scientific computing and statistics

Wide applications in

▶ Statistical physics
▶ Bayes inverse problems
▶ Uncertainty quantification
▶ Filtering
▶ ...

Input Model

𝜃 𝐺 𝜃

𝑦 = 𝐺 𝜃 + noise

Data

Markov chain Monte Carlo (MCMC) has been the workhorse for sampling problems

at a discretem-step: x(m+ 1) = R(x(m), π)

whereR is some random mapping. Asm → ∞,x(m) approximately draws from π
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Anisotropy and affine invariance [Goodman, Weare 2010]

Probability distributions can be highly anisotropic or ill-conditioned, such as due to
hierarchical Bayes or multiple scales in physical fields
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▶ Ordinary MCMC may suffer from anisotropy

▶ Affine invariance: for any invertible affine
transformation y = ϕ(x) = Ax+ b

y(m+ 1) = R(y(m), ϕ#π)

Convergence behavior of x(m) toward π
matches that of y(m) toward ϕ#π

▶ Concept motivated by affine invariance of
optimization algorithms: Nelder-Mead
simplex [Nelder, Mead 1965] and Newton
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Ensemble affine invariant sampler [Goodman, Weare 2010]

Affine invariance in MCMC is widely achieved by ensemble samplers

Ensemble samplers: at a discretem-step

(x1(m+ 1),x2(m+ 1), . . . ,xN (m+ 1)) = R(x1(m),x2(m), . . . ,xN (m), π)

Target distribution is πN in the product space

Affine invariance: for any invertible affine transformation y = ϕ(x) = Ax+ b

(x1, . . . ,xN )
ϕ→ (y1, . . . ,yN ) = (Ax1 + b, . . . , AxN + b) ,

it holds that

(y1(m+ 1),y2(m+ 1), . . . ,yN (m+ 1)) = R(y1(m),y2(m), . . . ,yN (m), ϕ#π)

Stretch move sampler
▶ Ensemble at stepm ∈ N (x1(m),x2(m), ...,xN (m))

▶ Stretch move randomly selects two xi(m) and xj(m)

x̃i(m+ 1) = xj(m) + Z(xi(m)− xj(m))

where density of Z satisfies g(z) ∝ 1√
z
for z ∈ [a−1, a]; recommended a = 2

▶ Accept this proposal with probability

min {1, Zd−1π(x̃i(m+ 1))

π(xi(m))
}

▶ Affine invariant since based on relative locations
▶ Used routinely in Bayesian applications: emcee package (>10k citations)

[Foreman-Mackey, Hogg, Lang, Goodman 2013]
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Challenges in high dimensions

Affine-invariant ensemble samplers are reported to behave well for moderate dimensions
but suffer from higher dimensions (e.g. d ≥ 50) [Huijser, Goodman, Brewer 2015]

“Ensemble methods are doomed to fail in high dimensions” [Carpenter 2017 (blog)]

▶ high-dimensional distributions typically concentrate on thin shells

▶ interpolation or extrapolation between two points in the stretch move—as well as in
many other ensemble samplers—is unlikely to fall within this shell

▶ small stepsizes must be used!

▶ the samplers effectively “devolve into random walks with poorly biased directional
choices”
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This work: New affine invariant ensemble samplers and their dimensional scaling

1 An ensemble side move sampler with better proposal in high dimensions
(derivative-free affine invariant samplers)

▶ random walk scaling of stepsize d−1/2 for Gaussian targets

▶ outperform stretch move by a factor of two or more in autocorrelation time

2 Affine invariant ensemble Hamiltonian Monte Carlo
(derivative-based affine invariant samplers)

▶ better scaling of stepsize d−1/4 for Gaussian targets

▶ can outperform derivative-free ensemble samplers and HMC by order of magnitude
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Basic ensemble side move sampler (parallel version in later slides)

Side move sampler
▶ Ensemble at stepm ∈ N: (x1(m),x2(m), ...,xN (m))

▶ Side move randomly selects one xi(m) and two distinct xj(m),xk(m) ̸= xi(m)

x̃i(m+ 1) = xi(m) + σ(xj(m)− xk(m))ξ, ξ ∼ N (0, 1)

▶ Accept this proposal with probability

min {1, π(x̃i(m+ 1))

π(xi(m))
}

Connected to existing samplers: differential evolution and walk move (later slides)
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Illustrations of stretch and side moves

1 Left: stretch move to a four-pointed star
2 Middle: side move to a five-pointed star

3 Right: one demo for both moves, for a ring-shaped distribution

Intuition: Side move may align better with the tangential directions
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Connection to existing ensemble samplers

1 Connection to differential evolution MCMC [Ter Braak 2006]

x̃i(m+ 1) = xi(m) + γ(xj(m)− xk(m)) + σξ

where γ, σ are scalars and ξ ∼ N (0, Id×d)

2 Connection to walk move [Goodman, Weare 2010]: select a subset S of particles (with
meanmS) different from xi(m). With i.i.d. ξj ∈ N (0, 1), the proposal is

x̃i(m+ 1) = xi(m) +
1√
|S|
∑
j∈S

(xj(m)−mS)ξj

When |S| = 2, walk move is equivalent to side move with a specific step size since

1√
|S|
∑
j∈S

(xj(m)−mS)ξj =
1

2
√
2
(xj(m)− xk(m))(ξj − ξk)

for S = {xj ,xk} and ξj − ξk ∼ N (0, 2)
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Analysis of dimensional scaling for Gaussian targets
Proposition

Assume that xi,xj ,xk are independent draws from π(x) ∝ exp
(
−1

2x
Tx
)
,x ∈ Rd:

▶ For side move, x̃i(m+ 1) = xi(m) + σ(xj(m)− xk(m))ξ, if σ = α√
d
, then

lim
d→∞

E[acceptance] = E[min{1, exp
Ä
−α2ξ2 −

√
2αξz

ä
}] > 0

where ξ ∼ N (0, 1) is independent of z ∼ N (0, 1)

▶ For stretch move, x̃i(m+ 1) = xj(m) + Z(xi(m)− xj(m)), if a = 1 + β√
d
, then

lim
d→∞

E[acceptance] = E[min{1, exp
Å
−3

2
β2U2 −

√
3βUz

ã
}] > 0

where U ∼ Unif[−1, 1] is independent of z ∼ N (0, 1)

▶ Random walk type scaling of stepsize: σ and a− 1∼ d−1/2

Celebrated results for single-chain MCMC [Gelman, Gilks, Roberts 1997]
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Optimize the expected squared jump distance (ESJD)
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Figure: Caption

ESJD in one iteration:
[Pasarica, Gelman 2010]

E[∥xi(m+ 1)− xi(m)∥22]

Optimize over stepsize:

▶ For side move

σ⋆ ≈ 1.687√
d

▶ For stretch move

a⋆ − 1 ≈ 2.151√
d

Optimal ESJD:
side move > stretch move
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Implementation: Parallel ensemble side move

Split ensemble approach [Foreman-Mackey, Hogg, Lang, Goodman 2013]

▶ Divide the ensemble into two groups:

S(0) = {x1, ...,xN/2}, S(1) = {xN/2+1, ...,xN}

▶ At each time step, for each particle in S(0), we randomly select two particles from
the complementary set S(1) and perform the side move, applying the Metropolis
accept-reject criterion

▶ Then, we follow the same procedure for particles in S(1), selecting particles from the
complementary set S(0) to form the side moves and perform Metropolis

▶ Iterate the above two steps

This approach preserves the correct detailed balance condition
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Test criterion: integrated autocorrelation time in the stationary phase

Ensemble samplers generate sequences (x1(m), ...,xN (m)) for 1 ≤ m ≤ M

▶ We estimate the observable A = Ex∼π[f(x)] =
∫
f(x)π(x)dx via

Âe =
1

M

M∑
m=1

F (x1(m), ...,xN (m)) =
1

M

M∑
m=1

(
1

N

N∑
i=1

f(xi(m))

)
▶ At the stationary phase, for largeM , the variance of the estimator satisfies

Var(Âe) ≈
τe
M

Varx1,...,xN∼πN
[F (x1, ...,xN )] =

τe
NM

Varx∼π[f(x)]

where τe is the integrated autocorrelation time τe =
∑+∞

m=−∞
Ce(m)
Ce(0)

with the
autocovariance function defined as

Ce(m) = lim
m′→∞

Cov[F (x1(m
′), ...,xN (m′)), F (x1(m+m′), ...,xN (m+m′))]

The autocorrelation function at lagm is the ratio Ce(m)
Ce(0)
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Numerical experiments on high dimensional Gaussians

Target: Gaussian distributions in d dims
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Figure: Scaled autocorrelation function for 1d position observable; Scaled lag= original lag/dim×4

This implies theO(d) scaling of autocorrelation function and autocorrelation time
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Discussions

Both ensemble stretch and side moves are affine invariant and derivative free

▶ Optimal scaling of stepsize parameters∼ d−1/2

▶ Side move outperforms stretch move in ESJD, and autocorrelation time in practice
(more numerical examples at the end)

▶ Still, bottleneck ofO(d) autocorrelation time: intrinsic to random walk scaling

Derivative-based samplers have been shown to scale better with dimension

▶ Metropolized Langevin stepsize∼ d−1/3 [Roberts, Rosenthal 1998]

▶ Hamiltonian Monte Carlo stepsize∼ d−1/4 [Beskos, Pillai, Roberts, Sanz-Serna, Stuart 2013]

Many existing work to adapt these derivative-based samplers to anisotropy [Girolami,
Calderhead 2011], [Martin, Wilcox, Burstedde, Ghattas 2012], [Greengard 2015], [Simsekli, Badeau, Cemgil,
Richard 2016], [Leimkuhler, Matthews, Weare 2018], [Kleppe 2019], [Garbuno-Inigo, Hoffmann, Li, Stuart
2020], [Garbuno-Inigo, Nüsken, Reich 2020], [Hoffman, Sountsov 2022], [Tran, Kleppe 2024], etc.
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This work: New affine invariant ensemble samplers and their dimensional scaling
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Hamiltonian Monte Carlo (HMC)

For π ∝ exp(−V ), HMC augments it to π̃ ∝ exp
(
−V (x)− 1

2p
TM−1p

)
▶ Hamiltonian dynamics dx

dt = M−1p, dp
dt = −∇V (x) keep π̃ invariant

▶ Discretization: Lh is one leapfrog with step size h, i.e., (xh,ph) = Lh(x,p) with

ph/2 = p− h

2
∇V (x), xh = x+ hM−1ph/2, ph = ph/2 −

h

2
∇V (xh)

▶ P is the momentum flip operator such that P(x,p) = (x,−p)

HMC algorithm: alternating between two steps
1 Sample a momentum p ∼ N (0,M)

2 Propose an update (x̃, p̃) = PLnh(x,p) and accept with probability

prob = min {1, exp
Å
−V (x̃)− 1

2
p̃TM−1p̃+ V (x) +

1

2
pTM−1p

ã
}

Importance of tuning ofM,h, n: NUTS [Hoffman, Gelman 2014], Stan [Carpenter et al. 2017], etc.
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First attempt: Covariance preconditioning using mass matrices

Attempt: The simplest idea is to setM−1 to be a covariance matrix

For the sake of parallel algorithm, we use split ensembles with two groups

S(0) = {x1, ...,xN/2}, S(1) = {xN/2+1, ...,xN}

The joint distribution (CovS(0) ,CovS(1) : empirical covariance matrices of S(0), S(1))

exp

Ñ
−

N/2∑
i=1

(V (xi) +
1

2
pT
i CovS(1)pi)−

N∑
i=N/2+1

(V (xi) +
1

2
pT
i CovS(0)pi)

é
does not preserve the correct marginal on xi

Resolution: need to add−N
4 log detCovS(0) − N

4 log detCovS(1) to the potential

Issue: particles in each group must be accepted or rejected at the same time
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Better idea: Antisymmetric preconditioning

Consider the simple joint distribution

exp

Ñ
−

N/2∑
i=1

Å
V (xi) +

1

2
pT
i pi

ã
−

N∑
i=N/2+1

Å
V (xi) +

1

2
pT
i pi

ãé
Key observation: The following preconditioned Hamiltonian dynamics

dxi

dt
= Bpi,

dpi

dt
= −BT∇V (xi)

leaves the distribution invariant

This is an antisymmetric preconditioning of gradient flow[
dxi
dt

dpi

dt

]
=

ï
0 B

−BT 0

ò
︸ ︷︷ ︸
antisymmetric

ñ∇V (xi)

pi

ô
Used in [Leimkuhler, Matthews, Weare 2018] for preconditioning underdamped Langevin
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Affine invariant ensemble HMC
▶ Fix particles in S(1), and update particles in S(0): sample pi ∼ N (0, IN/2×N/2), run

n steps of leapfrog of the dynamics and apply Metropolis
dxi

dt
= BS(1)pi,

dpi

dt
= −BT

S(1)∇V (xi), 1 ≤ i ≤ N/2

with (mS(1) is the mean of all particles in S(1))

BS(1) =
1√
N/2

[xN/2+1 −mS(1) , ...,xN −mS(1) ] ∈ Rd×N/2

▶ Fix particles in S(0), and update particles in S(1) similarly: dynamic is now
dxi

dt
= BS(0)pi,

dpi

dt
= −BT

S(0)∇V (xi), N/2 + 1 ≤ i ≤ N

with (mS(0) is the mean of all particles in S(0))

BS(0) =
1√
N/2

[x1 −mS(0) , ...,xN/2 −mS(0) ] ∈ Rd×N/2

▶ Iterate the above two steps
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Dimensional scaling analysis of the affine invariant ensemble HMC

Proposition: Assume that xi are independent draws from π(x) ∝ exp
(
−1

2x
Tx
)
,x ∈ Rd.

If we take h = αd−1/4, n = T/h and limd→∞
d

N/2 = ρ ∈ [0, 1), then

lim
d→∞

E[acceptance] = E[min{1, exp
(
N (α4µρ, α

4σρ)
)
}] > 0

whereN (α4µρ, α
4σρ) is Gaussian with

µρ = − 1

32

∫
λ4 sin2(

√
λT )dνρ(λ), σρ =

1

16

∫
λ6 sin2(

√
λT )dνρ(λ)

For ρ ∈ [0, 1), dνρ(λ) = 1
2πρλ

√
(c− λ)(λ− b)χ[b,c](λ)dλ, where

b = (1−√
ρ)2, c = (1 +

√
ρ)2 and χ[b,c] is the characteristic function of [b, c]

Moreover, the expected squared jumped distance (ESJD) for one iteration satisfies

lim
d→∞

1

d
ESJD = c ∈ (0,∞), in contrast to lim

d→∞
ESJD = c′ ∈ (0,∞) for stretch/side moves
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Variant: directional side move in ensemble HMC

▶ Fix particles in S(1), and update particles in S(0): for 1 ≤ i ≤ N/2, sample
pi ∼ N (0, 1) and two particles xj and xk from S(1), run n steps of leapfrog of the
dynamics and apply Metropolis

dxi

dt
=

1√
2d

(xj − xk)pi,
dpi
dt

= − 1√
2d

(xj − xk)
T∇V (xi)

▶ Fix particles in S(0), and update particles in S(1) similarly
▶ Iterate the above two steps

We call the algorithm Hamiltonian side move; the previous one Hamiltonian walk move

Proposition: Assume that xi are independent draws from π(x) ∝ exp
(
−1

2x
Tx
)
,x ∈ Rd.

Let h = α < 2 independent from d, then for one iteration:

lim
d→∞

E[acceptance] > 0, lim
d→∞

ESJD = c′ ∈ (0,∞)

Hamiltonian side move has the same scaling as the derivative-free side move
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Numerical experiments: anisotropic Gaussian

Target: Gaussian distributions in d dims with condition number κ = 103
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Figure: Autocorrelation time (1D position observable) versus dimension. For HMC and affine
invariant HMC (Hamiltonian walk and side moves), the total integration time is T = 1 and n is the
number of leapfrog steps
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Numerical experiments: anisotropic Gaussian

Target: Gaussian distributions in d = 128 dims with condition number κ = 103

acceptance autocorrelation func eval grad eval
rate time τe or τs per iter per iter

Stretch move 0.45 2043.6 1 0
Side move 0.45 1000.1 1 0
HMC: n = 10 0.57 67.8 1 11
HMC: n = 2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.98 10.5 1 11
Hamiltonian walk move: n = 2 0.61 12.7 1 3
Hamiltonian side move: n = 10 1.00 898.2 1 11
Hamiltonian side move: n = 2 0.98 732.3 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration
time is T = 1 and n is the number of leapfrog steps
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Numerical experiments: physical fields (discretized by finite difference with d grid points)

π(u) ∝ exp
Ä
−
∫ 1
0

1
2(∂xu(x))

2 + V (u(x))dx
ä
, V (u) = (1− u2)2
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Figure: Autocorrelation time (integral observable
∫ 1

0
u(x)dx) versus dimension. For HMC and

affine invariant HMC (Hamiltonian walk and side moves), the total integration time is T = 1 and n
is the number of leapfrog steps
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Discussions

▶ Side move: more favorable high dimensional ensemble proposal than stretch move
Nevertheless random walk scaling bottleneck applies

▶ Affine invariant HMC: derivative-based ensemble sampler
Antisymmetric preconditioning and much better scaling for stepsize h ∼ d−1/4

Further adaptation of stepsize and integration length?

▶ Affine invariant Hamiltonian side move: random walk scaling but slightly better than
side move per iteration (further potential adaptation of derivative-free side moves?)

▶ Extension of analysis beyond Gaussians and stationary phases

▶ Broader invariance? Diffemorphism invariance of Fisher-Rao gradient flows and
variational inference [Chentsov 1985], [Chen, Huang, Huang, Reich, Stuart 2023, 2024], etc.
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Thank you!
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Back-Up Slides
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Numerical experiments: physical fields (discretized by finite difference with d grid points)

π(u) ∝ exp
Ä
−
∫ 1
0

1
2(∂xu(x))

2 + V (u(x))dx
ä
, V (u) = (1− u2)2

acceptance autocorrelation func eval grad eval
rate time τe or τs per iter per iter

Stretch move 0.44 3021.3 1 0
Side move 0.44 1398.3 1 0
HMC: n = 10 0.00 — 1 11
HMC: n = 2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.98 11.2 1 11
Hamiltonian walk move: n = 2 0.59 14.9 1 3
Hamiltonian side move: n = 10 1.00 902.8 1 11
Hamiltonian side move: n = 2 0.98 770.8 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration
time is T = 1 and n is the number of leapfrog steps
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Numerical experiments: ring-shaped distributions in d dimensions

π(x) ∝ exp
(
−(∥x∥22 − 1)2/l2

)
, l = 0.25, d = 50

acceptance autocorrelation func eval grad eval
rate time τe or τs per iter per iter

Stretch move 0.29 2435.4 1 0
Side move 0.45 355.4 1 0
HMC: n = 10 0.69 20.8 1 11
HMC: n = 2 0.00 — 1 3
Hamiltonian walk move: n = 10 0.99 10.7 1 11
Hamiltonian walk move: n = 2 0.72 11.9 1 3
Hamiltonian side move: n = 10 1.00 354.8 1 11
Hamiltonian side move: n = 2 0.98 309.7 1 3

Table: For HMC and affine invariant HMC (Hamiltonian walk and side moves), the total integration
time is T = 1 and n is the number of leapfrog steps


