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Context

Classical sampling problem
Goal: draw (approximate) samples from π ∝ exp(−V )

Input Model

𝜃 𝐺 𝜃

𝑦 = 𝐺 𝜃 + noise

Data

Applications in molecular dynamics, Bayes inverse problems, ...

• In molecular dynamics: V is the inter-atomic potential
• In Bayes inverse problem: π is posterior distribution

Challenges: High dimensional probability distributions
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MCMC algorithm with Langevin’s dynamics

Overdamped Langevin’s dynamics

dXt = −∇V (Xt)dt+
√
2dWt

Under mild assumptions, as t → ∞, Law(Xt) → π ∝ exp(−V )

• Unadjusted Langevin: Euler–Maruyama scheme

X(k+1)h = Xkh − h∇V (Xkh) +
√
2(W(k+1)h −Wkh)

As k → ∞, Law(Xkh) → πh where hopefully πh ≈ π (bias)

• How large is the bias? For V ∈ C2 with αI ⪯ ∇2V ⪯ βI:

W2(π, πh) = O(
β

α

√
dh) [Durmus, Moulines, 2019], etc.

• Implication: h ∼ 1/d for bounded bias in any dimension
Can be improved to h ∼ 1/d1/2 with more assumptions [Li, Zha, Tao 2022]
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Bias can be completely eliminated

Metropolis-adjusted Langevin: acceptX(k+1)h w/ probability

paccept = min

®
1,

π(X(k+1)h)q(Xkh|X(k+1)h)

π(Xkh)q(X(k+1)h|Xkh)

´
where q is the transition kernel of unadjusted Langevin; otherwise
reject andX(k+1)h = Xkh. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

However, for this algorithm, hmust be small when d is large

• Existing theory suggests h ∼ 1/d1/3, 1/d1/2, 1/d depending on
notion of convergence and distribution ofX0

[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

• This is necessary for non-negligible acceptance rates
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Performance illustration: for fixed stepsize h
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Unadjusted and adjusted Langevin: Gaussian targets and fixed h

Adjusted Langevin: acceptance rate

• Fixed h will fail when d increases
• Is this a full story?
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A Closer Look at Existing Theoretical Results in High Dimensions

For MALA: h needs to be small for high acceptance rates

• Theories in the literature suggest h ∼ 1/d1/3 or 1/
√
d or 1/d

[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

• This scaling is not avoidable in general

For unadjusted Langevin: h needs to be small for small bias

• Theories in the literature suggest h ∼ 1/
√
d or h ∼ 1/d

[Durmus, Moulines, 2019], [Li, Zha, Tao 2022], etc.

• Such bias is measured in theW2 distance or other divergence

Fact: In unadjusted Langevin, h = O(1) could suffice for certain
averaged observables, e.g. f(x) = 1

d

∑d
i=1 x

(i), which satisfies
|∇f(x)|2 ≤ |x|2/

√
d [Bou-Rabee, Schuh 2023], [Durmus, Eberle 2024]
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Which Observables Will Be of Interest?

Often high dimensionality occurs when many nuisance variables are
required to accurately describe the remaining variables’ distribution

[Thanks to Spencer Guo]

Molecular dynamics (MD) example

• We care about averages with
respect to a few atoms in the voltage
sensing protein in the middle

• We do not care about averages with
respect to atoms in the lipid or
water molecules

• We need all the atoms to accurately
describe the system

We are interested in a small part!

Disclaimer: the potential V in MD is more
complex than considered in our analysis
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This Work: Accuracy for Low Dimensional Marginal Distributions

For π(x) = π(x(1), ..., x(d)), aK-dimensional marginal distribution is
obtained by marginalizing over the remaining d−K coordinates

Theorem [Chen, Cheng, Niles-Weed, Weare 2024]

(informal) for unadjusted Langevin in d dimensions, h = O(1/K)
could suffice for bounded bias in allK dimensional marginals

• Rigorous results proved under the assumption αI ⪯ ∇2V ⪯ βI
and V is Gaussian/“sparse” (and some generalizations)

• Iteration complexity isO(K), nearly independent of d

(log d terms omitted)

Bias in low dimensional marginals can behave much better than in
full distribution!
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Updated Figure: If Interested in A Small Number of Coordinates
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• Same forK-marginals, ifK is independent of dimension
(under the assumption of our theorem)

• Unadjusted approaches can be more scalable than adjusted
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Roadmap of this Talk

1 A New Metric Designed for Low Dimensional Marginals

2 Delocalization? Product, Gaussian, and Rotations

3 Delocalization: Potentials with Sparse and Local Interactions

4 Generalization with Asymptotic Arguments



10/27

Roadmap of this Talk

1 A New Metric Designed for Low Dimensional Marginals

2 Delocalization? Product, Gaussian, and Rotations

3 Delocalization: Potentials with Sparse and Local Interactions

4 Generalization with Asymptotic Arguments



11/27

New Metric for Low Dimensional Marginals

StandardWp metric: ℓ2 measures full coordinates

Wp(µ, ν) =

Å
min

γ∈Π(µ,ν)

∫
|x− y|p2 γ(dx,dy)

ã1/p
NewWp,ℓ∞ metric: replace ℓ2 by ℓ∞

Wp,ℓ∞(µ, ν) =

Å
min

γ∈Π(µ,ν)

∫
|x− y|p∞γ(dx,dy)

ã1/p

The rationale
• K|x− y|p∞ ≥∑K

t=1 |x(jt) − y(jt)|p for any 1 ≤ jt ≤ d

• K1/p ·Wp,ℓ∞(µ, ν) serves as an upper bound for theWp

distance between anyK-dimensional marginals of µ and ν

From now on, we consider p = 2 andK = 1
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Positive Examples: Product Measures

W2,ℓ∞ bias for product measures

Consider π ∝ exp(−V ) where V (x) =
∑d

i=1 Vi(x
(i)) satisfies

α ≤ ∇2Vi ≤ β. Then, for h ≤ 1/β, it holds that

W2,ℓ∞(πh, π) = O

Å
β

α

»
h log(2d)

ã
• ThusW2(π

(j), π
(j)
h ) = O(βα

√
h log(2d))

• In fact 1D marginalW2(π
(j), π

(j)
h ) = O(βα

√
h) dimension free

• In comparison:

W2(π, πh) = O(
β

α

√
dh) [Durmus, Moulines, 2019], etc.

• Thus overall bias nearly delocalized accross all 1D marginals
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Positive Examples: Gaussian Measures

W2,ℓ∞ bias for Gaussian measures

Consider π ∝ exp(−V ) and V (x) = 1
2(x−m)TΣ−1(x−m) where

m ∈ Rd and αI ⪯ Σ−1 ⪯ βI . Then, for h ≤ 1/β, it holds that

W2,ℓ∞(πh, π) = O
(»

h log(2d)
)

• Use explicit formula πh = N (0,Σ(I − h
2Σ

−1)−1)

• ThusW2(π
(j), π

(j)
h ) = O

Ä√
h log(2d)

ä
nearly dimension free

• Again, overall bias nearly delocalized accross all 1D marginals
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A Negative Example

W2,ℓ∞ bias for rotated product measures

Consider π = ρ⊗d where ρ is a 1D centered distribution, such that the
mean of ρ and the biased ρh differs by δ > 0.

Let π̃ = Q#π whereQ is a rotation (Qx)(1) = 1√
d

∑d
i=1 x

(i). Then

W2,ℓ∞(π̃, π̃h) ≥
√
dδ

where π̃h is the corresponding biased distribution for π̃

Proof sketch: we have π̃h = Q#πh

W2,ℓ∞(π̃, π̃h) ≥ W1,ℓ∞(π̃, π̃h)

≥
∣∣∣∣∫ x(1)(π̃ − π̃h)

∣∣∣∣
=

∣∣∣∣∣
∫
(
1√
d

d∑
i=1

x(i))(π − πh)

∣∣∣∣∣ = √
dδ

Bias can concentrate on one coordinate!
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Delocalization of Bias

Observations:
• Positive examples: product measures, Gaussian measures

• Negative examples: some rotated product measures

The negative example is characterized by strong, dense interactions
between coordinates after the rotation

Question: To which broader extent that delocalization holds?
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Main Results: Sparse and Local Potentials

Theorem: W2,ℓ∞ bias for sparse/local potentials

For V ∈ C2 with αI ⪯ ∇2V ⪯ βI that satisfies the sparsity
condition illustrated in the figure with sk ≤ C(k + 1)n, then

W2,ℓ∞(π, πh) ≤
»

h log(2d)

Å
O
(β
α
log(2d)

)ãn
2
+1

Some 𝑖th variable 𝑥(")

1st layer: 𝑁$(𝑥("))

2nd layer: 𝑁%(𝑥("))

Potential 𝑉 𝑥 = 	∑ 𝑉"(𝑥)&
"'$

and 𝑉" only depends on 𝑁$(𝑥("))

Sparsity parameter 𝑠( = max
"
	 𝑁( 𝑥 " . This example: 𝑠( = 𝑂(𝑘%)
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Sketch of Arguments

• Continuous time Yt, t ∈ [kh, (k + 1)h] and unadjustedXkh

X(k+1)h = Xkh − h∇V (Xkh) +
√
2(B(k+1)h −Bkh)

coupled with the sameBt

• Define Y (k+1)h = Ykh − h∇V (Ykh) +
√
2(B(k+1)h −Bkh)»

E[|X(k+1)h − Y(k+1)h|2∞]

≤
»

E[|X(k+1)h − Y (k+1)h|2∞]︸ ︷︷ ︸
(a)

+
»

E[|Y (k+1)h − Y(k+1)h|2∞]︸ ︷︷ ︸
(b) “discretization error”

• Part (b): discretization error =O(βh3/2
√

log(2d))

(reminiscent of the fact that E[|Bt|2∞] ≤ t log(2d))
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• Part (a):

(a) =
»

E[|Xkh − Ykh − h(∇V (Xkh)−∇V (Ykh))|2∞]

=
»

E[|Hk(Xkh − Ykh)|2∞]

whereHk = I − h
∫ 1
0 ∇2V (uXkh + (1− u)Ykh)du

• When∇2V is diagonal, |Hk|∞ = |Hk|2 ≤ 1− αh ≤ exp(−αh)
so we get contraction

• In general,Hk is non-diagonal but sparse. We have

|Hk|∞ ≤ √
s1|Hk|2 ≤

√
s1 exp(−αh)

Not a one-step contraction in general
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Sketch of Arguments: Multiple-step Coupling

• One-step iteration»
E[|X(k+1)h − Y(k+1)h|2∞] ≤

»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

• Moving back and two-step iterations»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

≤
»

E[|Hk(Xkh − Y kh)|2∞] +
»

E[|Hk(Y kh − Ykh)|2∞] + error(1)

=
»

E[|HkHk−1(X(k−1)h − Y(k−1)h)|2∞] + error(2)

• N -step iterations»
E[|X(k+N)h − Y(k+N)h|2∞]

≤
»
E[|Hk+N−1Hk+N−2 · · ·Hk(Xkh − Ykh)|∞] + error(N)

≤ exp(−αNh)
√
d
»

E[|Xkh − Ykh|2∞] + error(N)

HereN ∼ (log d)/h leads to a contraction



19/27

Sketch of Arguments: Multiple-step Coupling

• One-step iteration»
E[|X(k+1)h − Y(k+1)h|2∞] ≤

»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

• Moving back and two-step iterations»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

≤
»

E[|Hk(Xkh − Y kh)|2∞] +
»

E[|Hk(Y kh − Ykh)|2∞] + error(1)

=
»
E[|HkHk−1(X(k−1)h − Y(k−1)h)|2∞] + error(2)

• N -step iterations»
E[|X(k+N)h − Y(k+N)h|2∞]

≤
»
E[|Hk+N−1Hk+N−2 · · ·Hk(Xkh − Ykh)|∞] + error(N)

≤ exp(−αNh)
√
d
»

E[|Xkh − Ykh|2∞] + error(N)

HereN ∼ (log d)/h leads to a contraction



19/27

Sketch of Arguments: Multiple-step Coupling

• One-step iteration»
E[|X(k+1)h − Y(k+1)h|2∞] ≤

»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

• Moving back and two-step iterations»
E[|Hk(Xkh − Ykh)|2∞] + error(1)

≤
»

E[|Hk(Xkh − Y kh)|2∞] +
»

E[|Hk(Y kh − Ykh)|2∞] + error(1)

=
»
E[|HkHk−1(X(k−1)h − Y(k−1)h)|2∞] + error(2)

• N -step iterations»
E[|X(k+N)h − Y(k+N)h|2∞]

≤
»
E[|Hk+N−1Hk+N−2 · · ·Hk(Xkh − Ykh)|∞] + error(N)

≤ exp(−αNh)
√
d
»
E[|Xkh − Ykh|2∞] + error(N)

HereN ∼ (log d)/h leads to a contraction



20/27

Sketch of Arguments: Bound Discretization Errors

How to control error(N)?
• ForN = 1:

E[|Y (k+1)h − Y(k+1)h|2∞]

=E[|
∫ (k+1)h

kh

∇V (Yt)−∇V (Ykh)dt|2∞]

≤h

∫ (k+1)h

kh

E[|∇V (Yt)−∇V (Ykh)|2∞]dt

≤h

∫ (k+1)h

kh

∫ 1

0

E[|∇2V (uYt + (1− u)Ykh)(Yt − Ykh)|2∞]dudt

≤hs1β
2

∫ (k+1)h

kh

E[|Yt − Ykh|2∞]dt = hs1β
2 ·O(h2 log(2d))
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Sketch of Arguments: Bound Discretization Errors

How to control error(N)?
• ForN = 2:

E[|Hk(Y kh − Ykh)|2∞]

≤h

∫ kh

(k−1)h

E[|Hk(∇V (Yt)−∇V (Y(k−1)h))|2∞]dt

≤h

∫ kh

(k−1)h

∫ 1

0

E[|Hk(∇2V (uYt + (1− u)Y(k−1)h))(Yt − Y(k−1)h)|2∞]dudt

• How to bound |Hk(∇2V (uYt + (1− u)Y(k−1)h))|∞?

• A simple bound

|Hk(∇2V (uYt + (1− u)Y(k−1)h))|∞ ≤ √
s2β exp(−αh)

• Issue: although the bound does take into account sparsity, the
sparsity growth s2 does not depend on h
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Sketch of Arguments: Sparsity Growth Bound

Consider the generalN -case
• Let JN = |Hk+N−1Hk+N−2 · · ·Hk(∇2V (uYt + (1− u)Y(k−1)h)|∞,
then simple bound |JN |∞ ≤ β

√
sN exp(−αNh)

The issue again is that sN does not depend on h

• Improved bound by using sparsity bound for terms involving
small powers of h and using maximum bound for terms
involving large powers of h

|JN |∞ ≤ β(
√
sr exp(−αNh) +

√
d exp(−r))

for any r ≥ e2Nhβ

• In particular, taking rN = ⌈e2Nhβ + log
√
d⌉ leads to

|JN |∞ ≤ 2β
√
srN exp(−αNh)

Here rN scales with physical timeNh
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Sketch of Arguments: Back to Discretization Errors

Back to the estimate of error(N)

• ForN = 2:

E[|Hk(Y kh − Ykh)|2∞]

≤h

∫ kh

(k−1)h

E[|Hk(∇V (Yt)−∇V (Y(k−1)h))|2∞]dt

≤h

∫ kh

(k−1)h

∫ 1

0

E[|Hk(∇2V (uYt + (1− u)Y(k−1)h))(Yt − Y(k−1)h)|2∞]dudt

≤4hsr2β
2 exp(−2αh)

∫ kh

(k−1)h

E[|Yt − Y(k−1)h|2∞]dt

=4hsr2β
2 exp(−2αh) ·O(h2 log(2d))
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Sketch of Arguments: Back to Discretization Errors

Putting everything together
• For generalN :

error(N) ≤ 2β

(
N∑
i=1

exp(−αh(i− 1))
√
sri

)
·O
(
h3/2
»
log(2d)

)

• Therefore, we get

W2,ℓ∞(ρ(k+N)h, π) ≤ exp(−αNh)
√
dW2,ℓ∞(ρkh, π) + error(N)

• Using sk = O((k + 1)n) and takingN = ⌈ log(2
√
d)

hα ⌉

W2,ℓ∞(ρ(k+N)h, π) ≤
1

2
W2,ℓ∞(ρkh, π)+

»
h log(2d)

Å
O
(β
α
log(2d)

)ãn
2 +1

• FinallyW2,ℓ∞(πh, π) ≤
√
h log(2d)

Ä
O
(
β
α log(2d)

)än
2 +1
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Roadmap of this Talk

1 A New Metric Designed for Low Dimensional Marginals

2 Delocalization? Product, Gaussian, and Rotations

3 Delocalization: Potentials with Sparse and Local Interactions

4 Generalization with Asymptotic Arguments
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Asymptotic Arguments for the Bias of Observables

Bias of Observables [Chen, Cheng, Niles-Weed, Weare 2024]

Assume f is sufficiently regular and
∫
fπ = 0. Then, it holds that∫

fπ −
∫

fπh =
1

4
h

Å∫
(−2∆f + |∇ log π|22f)π

ã
+ o(h)

Moreover, we also have the following formula:∫
fπ −

∫
fπh = −1

4
h

Å∫
(∆f + f∆ log π)π

ã
+ o(h)

Poisson argument: Let L and Lh be the generators of Langevin
dynamics and unadjusted Langevin [Mattingly, Stuart, Tretyakov 2010]

• Lu = ∇ log π · ∇u+∆u,
Lhu(x) =

1
h(E[u(x+ h∇ log π(x) +

√
2hξ)]− u(x))

• Let Lu = f . Then, we get∫
fπ −

∫
fπh = −

∫
Luπh =

∫
(Lhu− Lu)πh, ...
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Delocalization of Bias for Observables

Bias of Observables [Chen, Cheng, Niles-Weed, Weare 2024]

Assume f is sufficiently regular and
∫
fπ = 0. Then, it holds that∫

fπ −
∫

fπh =
1

4
h

Å∫
(−2∆f + |∇ log π|22f)π

ã
+ o(h)

Moreover, we also have the following formula:∫
fπ −

∫
fπh = −1

4
h

Å∫
(∆f + f∆ log π)π

ã
+ o(h)

• If π(x) = N (x;m,Σ), then
∫
f(∆ log π)π = 0. The first order

term
∫
π∆f only depends on the coordinates that f takes

• This delocalization of observable bias can be generalized to

π(x) ∝ exp(−V (x)) ∝ N (x;m,Σ) exp(−U(x))

i.e., perturbation of Gaussians
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Summary

A “delocalization of bias” phenomenon for unadjusted Langevin

• Nearly d-independent step size and complexity

• Phenomenon not shared by unbiased schemes

• We prove it for log-concave Gaussians and sparse potentials

• Not hold for some potentials with strong, dense interactions

• Asymptotic arguments for general observables and potentials
(up to first order)

Extension to general dynamics and distributions?
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