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Context

Classical sampling problem
Goal: draw (approximate) samples from 7 o exp(—V") J

y = G(6) + noise

Applications in molecular dynamics, Bayes inverse problems, ...

® |n molecular dynamics: V is the inter-atomic potential
® |n Bayes inverse problem: 7 is posterior distribution

Challenges: High dimensional probability distributions
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MCMC algorithm with Langevin’s dynamics

Overdamped Langevin’s dynamics
dX, = —VV(X;)dt + v2dW,

Under mild assumptions, as ¢t — oo, Law(X;) — 7 o exp(—V)
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MCMC algorithm with Langevin’s dynamics

Overdamped Langevin’s dynamics

dX, = —VV(X;)dt + v2dW,

Under mild assumptions, as t — oo, Law(X;) — 7 o exp(—V)

® Unadjusted Langevin: Euler-Maruyama scheme
X(ryh = Xen — WYV (Xin) + V2(Wiger1yn — Wan)
As k — oo, Law(Xkp,) — 73, where hopefully 7, =~ 7 (bias)
e How large is the bias? For V € C? with a < V2V < BI:

Wy (71', 7Th) = O(év dh) [Durmus, Moulines, 2019], etc.
o

® Implication: 4 ~ 1/d for bounded bias in any dimension

Can be improved to h ~ 1/d/2 with more assumptions [Li, Zha, Tao 2022]
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Bias can be completely eliminated

Metropolis-adjusted Langevin: accept X(k+1)h w/ probability

(X (ke 1)n) 4 Xkn| X k41)n)
T(Xkn) (X (k1) Xkn)
where ¢ is the transition kernel of unadjusted Langevin; otherwise

reject and X1y, = Xgn. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

Daccept = min {L
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Bias can be completely eliminated

Metropolis-adjusted Langevin: accept X(k+1)h w/ probability

(X (ke 1)n) 4 Xkn| X k41)n)
T( Xk ) 4( X kg 1) Xken)
where ¢ is the transition kernel of unadjusted Langevin; otherwise

reject and X1y, = Xgn. There will be no bias
[Rossky, Doll, Friedman 1978], [Roberts, Tweedie 1997]

Daccept = min {L

However, for this algorithm, i must be small when d is large

* Existing theory suggests i ~ 1/d'/3,1/d"/? 1/d depending on
notion of convergence and distribution of X,
[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

® This is necessary for non-negligible acceptance rates
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Performance illustration: for fixed stepsize h

Unadjusted and adjusted Langevin: Gaussian targets and fixed h
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® Fixed h will fail when d increases
® |s this a full story?
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A Closer Look at Existing Theoretical Results in High Dimensions

For MALA: h needs to be small for high acceptance rates )

* Theories in the literature suggest h ~ 1/d"/3 or 1/v/d or 1/d
[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

® This scaling is not avoidable in general

For unadjusted Langevin: h needs to be small for small bias J

* Theories in the literature suggest h ~ 1/v/d or h ~ 1/d

[Durmus, Moulines, 2019], [Li, Zha, Tao 2022], etc.

® Such bias is measured in the W5 distance or other divergence
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For MALA: h needs to be small for high acceptance rates )

* Theories in the literature suggest h ~ 1/d"/3 or 1/v/d or 1/d
[Roberts, Rosenthal 1998], [Christensen, Roberts, Rosenthal 2005], [Dwivedi, Chen,

Wainwright, Yu 2018], [Chewi, Lu, Ahn, Cheng, Gouic, Rigollet 2021], etc

® This scaling is not avoidable in general

For unadjusted Langevin: h needs to be small for small bias J

* Theories in the literature suggest h ~ 1/v/d or h ~ 1/d

[Durmus, Moulines, 2019], [Li, Zha, Tao 2022], etc.

® Such bias is measured in the W5 distance or other divergence

Fact: In unadjusted Langevin, h = O(1) could suffice for certain
averaged observables, e.g. f(z) = % Zle (™, which satisfies
‘Vf(l‘) ‘2 < ‘(L’|2/\/E [Bou-Rabee, Schuh 2023], [Durmus, Eberle 2024]
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Which Observables Will Be of Interest?

Often high dimensionality occurs when many nuisance variables are
required to accurately describe the remaining variables’ distribution J

Molecular dynamics (MD) example

® We care about averages with
respect to a few atoms in the voltage
sensing protein in the middle

® We do not care about averages with
respect to atoms in the lipid or
water molecules

® We need all the atoms to accurately
describe the system

We are interested in a small part!

Disclaimer: the potential V' in MD is more

[Thanks to Spencer Guo] complex than considered in our analysis
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This Work: Accuracy for Low Dimensional Marginal Distributions

For m(z) = w(zW, ..., 2(9)), a K-dimensional marginal distribution is
obtained by marginalizing over the remaining d — K coordinates

Theorem [chen, Cheng, Niles-Weed, Weare 2024]
(informal) for unadjusted Langevin in d dimensions, h = O(1/K)
could suffice for bounded bias in all &K dimensional marginals

e Rigorous results proved under the assumption ol < V2V < 31
and V is Gaussian/“sparse” (and some generalizations)

e Iteration complexity is O(K), nearly independent of d
W

(log d terms omitted)

Bias in low dimensional marginals can behave much better than in
full distribution!
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Updated Figure: If Interested in A Small Number of Coordinates

Unadjusted and adjusted Langevin: Gaussian targets and fixed h
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® Same for K-marginals, if K is independent of dimension
(under the assumption of our theorem)

® Unadjusted approaches can be more scalable than adjusted
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Roadmap of this Talk

A New Metric Designed for Low Dimensional Marginals

Delocalization? Product, Gaussian, and Rotations

Delocalization: Potentials with Sparse and Local Interactions

Generalization with Asymptotic Arguments
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Roadmap of this Talk

A New Metric Designed for Low Dimensional Marginals
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New Metric for Low Dimensional Marginals

Standard 1V, metric: /2 measures full coordinates

1/p
W) = min [ o =y (do.dy)
EH(u,

New W, ;= metric: replace ¢2 by (>

1/p
Wh,eoo (11, v) = ( min )/Iw—yl’éov(dw,dy)>

ye(p,v
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New Metric for Low Dimensional Marginals

Standard 1V, metric: /2 measures full coordinates

1/p
W) = min [ o =y (do.dy)
EH(u,

New W, ;= metric: replace ¢2 by (>

1/p
W oo (b, v) yerﬁuﬁ / |z — ylEy(dx dy)>

The rationale
° K|ﬂ7 — y|€o 2 Ztl(:l |aj(]t) — y(]t)|p for any 1 S jt S d

o KYP.W, 4 (u,v) serves as an upper bound for the W,
distance between any K-dimensional marginals of i and v

From now on, we considerp=2and K =1
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Roadmap of this Talk

Delocalization? Product, Gaussian, and Rotations
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Positive Examples: Product Measures

W ¢ bias for product measures

Consider 7 oc exp(—V) where V() = 3.4 | V;(x(?)) satisfies
a < V2V; < B. Then, for h < 1/, it holds that

Wape(1,) = O (2 /mlon(20)

Thus Wa(x), 7)) = O(£ /R 1og(2d))
In fact 1D marginal Wy (717, w,(Lj)) = O(gx/ﬁ) dimension free
® |n comparison:

Wa (71', 7Th) = O(é A% dh) [Durmus, Moulines, 2019], etc.
«

Thus overall bias nearly delocalized accross all 1D marginals
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Positive Examples: Gaussian Measures

W ¢ bias for Gaussian measures

Consider 7 o< exp(—V) and V(z) = £(z — m)TS! (z — m) where
m € R¥and af < ¥~! < BI. Then, for h < 1/, it holds that

Wa,goo (mp, 1) = O ( hlog(zd))

® Use explicit formula ), = A/(0,£(I — 2x-1)~1)
® Thus Wy (70, 77,(3)) =0 ( hlog(Zd)) nearly dimension free

® Again, overall bias nearly delocalized accross all 1D marginals
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A Negative Example
W3 ¢ bias for rotated product measures

Consider 7 = p®? where pis a 1D centered distribution, such that the
mean of p and the biased py, differs by § > 0.

Let 7 = Q# where Q is a rotation (Qz)") = % >4 2@, Then

Wo,eoe (%, 7p) > Vdo

where 7}, is the corresponding biased distribution for 7

Proof sketch: we have 7, = Q#my,

Wopoo (70, ) 2> Wi goo (T, 7p)

> ‘/fv(l)(ff—ﬁh)

L& oo
=‘/<ﬂ;x )(m — )

Bias can concentrate on one coordinate! 14/27
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Delocalization of Bias

Observations:
® Positive examples: product measures, Gaussian measures

® Negative examples: some rotated product measures

The negative example is characterized by strong, dense interactions
between coordinates after the rotation

Question: To which broader extent that delocalization holds?
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Roadmap of this Talk

Delocalization: Potentials with Sparse and Local Interactions
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Main Results: Sparse and Local Potentials

Theorem: /5 ¢ bias for sparse/local potentials

For V e C? with of < V2V < §1I that satisfies the sparsity
condition illustrated in the figure with s, < C'(k + 1), then

2y
Wo poo (1, ) < 4/ hlog(2d) <O(§log(2d))) "

Some ith variable x® .

1st layer: N; (x®) ..
2nd layer: N, (x®) . . O

Potential V(x) = X, Vi(x)
and V; only depends on N; (x®)

Sparsity parameter s, = max |Nk(x(i))| . This example: s, = 0(k?)
L
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Sketch of Arguments

e Continuous time Y;, ¢ € [kh, (k + 1)h] and unadjusted Xy,
Xty = Xien — BVV (Xpn) + V2(Bger1yn — Bin)

coupled with the same B;
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Sketch of Arguments

e Continuous time Y;, ¢ € [kh, (k + 1)h] and unadjusted Xy,
Xty = Xien — BVV (Xpn) + V2(Bger1yn — Bin)
coupled with the same B;

* Define Y 511y, = Yin — hVV (Yin) + V2(B(t1yn — Ben)

VEIX (eryh — Yirrynl2)
< \/EHX(k—l—l)h =Y (eyynlZ] + \/EH?(k—i—l)h = Ysnnlkl

(a) (b) “discretization error”
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Sketch of Arguments

e Continuous time Y;, ¢ € [kh, (k + 1)h] and unadjusted Xy,
Xty = Xien — BVV (Xpn) + V2(Bger1yn — Bin)
coupled with the same B;

* Define Y 511y, = Yin — hVV (Yin) + V2(B(t1yn — Ben)

VEIX (eryh — Yirrynl2)
< \/EHX(k—l—l)h =Y (eyynlZ] + \/EH?(k—i—l)h = Ysnnlkl

(a) (b) “discretization error”

* Part (b): discretization error = O(8h%/2/log(2d))
(reminiscent of the fact that E[| B;|% ] < tlog(2d))
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® Part (a):

@) = \E[| Xin — Yin — h(VV (Xgn) — VV (Yin)) 2]
= \/EHHk:(th — Yin) 3]

where Hy, = I — h [} V2V (uXpp + (1 — u)Yip)du

® When V2V is diagonal,
so we get contraction

Hiloo = |Hgl2a <1 — ah < exp(—ah)

® |n general, Hy, is non-diagonal but sparse. We have

|Hiloo < V/s1|Hgl2 < v/s1exp(—ah)

Not a one-step contraction in general
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Sketch of Arguments: Multiple-step Coupling

® One-step iteration

\/E[|X(k+1)h —Yrnnld) < \/EHHk(th — Yin)|3] + error(1)
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Sketch of Arguments: Multiple-step Coupling

® One-step iteration

VEIX s yn = Yoernnl2] < VEIHi(Xin — Yin)|2] + error(1)

® Moving back and two-step iterations

VE[Hy(Xin — Yan)|2] + error(1)
<VEH (X, — Vin) 2] + VEIHk (Vi — Yin) 2] + exror(1)
=/Ell HuHy,—1 (X (—1yn — Yie—1yn)|2] + error(2)
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Sketch of Arguments: Multiple-step Coupling

® One-step iteration

VEIX s yn = Yoernnl2] < VEIHi(Xin — Yin)|2] + error(1)

® Moving back and two-step iterations

VE[Hy(Xin — Yan)|2] + error(1)
<VEH (X, — Vin) 2] + VEIHk (Vi — Yin) 2] + exror(1)
=/Ell HuHy,—1 (X (—1yn — Yie—1yn)|2] + error(2)

e N-step iterations

\/E[|X(k+N)h = Yt nynl3]
S\/E[|Hk+N71Hk+N72 -+ Hi (X — Yin)|oo) + error(N)

< exp(—aNh)WVdr\/E[| Xgn — Yin|2,] + error(N)

Here N ~ (log d)/h leads to a contraction
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Sketch of Arguments: Bound Discretization Errors

How to control error(N)?
® For N =1:

E[IY (k1) — Yier1ynl2)
(k+1)h
=E[| VV(Y:) = VV (Yen)dt[2]
kh

(k1)
gh/ E[|VV (Y;) — VV (Yin)|% |dt
kh

(k+1)h
< | / V2V (uY; 4+ (1 — 0)Yin) (Vs — Yen)|2.]dudt

(k+1)h
§h51ﬁ2/ E[|Y; — Yin|2]dt = hs1 8% - O(h? log(2d))
kh
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Sketch of Arguments: Bound Discretization Errors

How to control error(N)?

® For N =2:
E[|Hy,(Yin — Yin) 2]
kh
<h ) E[|Hp(VV (Y:) = VV (Y1)n)) |2 ]dt
k—1)h

kh 1
Sh/( : / E[|Hy(V?V (uY; + (1 — w)Y(—1yn)) (Ve — Y(k71)h)|zo]dudt
k—1)h J0O

® How to bound | H(V?V (uY; + (1 — w)Y(k—1)n))oo?
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Sketch of Arguments: Bound Discretization Errors

How to control error(N)?

® For N =2:
E[|Hy,(Yin — Yin) 2]
kh
<h ) E[|Hp(VV (Y:) = VV (Y1)n)) |2 ]dt
k—1)h

kh 1
Sh/ : / E[|Hy(V?V (uY; + (1 — w)Y(—1yn)) (Ve — Y(k71)h)|zo]dudt
k—1)h

® How to bound |H,(V2V (uY; + (1 — u)Y(3—1)n))|eo?

® Asimple bound

[ Hu(V2V (uY; + (1= w)Y(-1)n))loo < /528 exp(—ah)
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Sketch of Arguments: Bound Discretization Errors

How to control error(N)?

® For N = 2:
E[|Hy,(Yin — Yin) 2]
kh
<h - E[|Hi(VV (Yy) = VV (Yr—1yn)) 2 ]dt
k—1)h

kh 1
Sh/ : / E[|Hy(V?V (uY; + (1 — w)Y(—1yn)) (Ve — Y(k71)h)|zo]dudt
k—1)h

® How to bound |H,(V2V (uY; + (1 — u)Y(3—1)n))|eo?
® Asimple bound
H(V2V (s + (1 — @)Y 1) oo < V538 exp(—ah)

® |ssue: although the bound does take into account sparsity, the
sparsity growth so does not depend on h
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Sketch of Arguments: Sparsity Growth Bound

Consider the general N-case

® let Jy = [Hyyn 1 Hpyn—2- - Ho(V2V (uY; 4 (1 — ) Y(—1)n) |oos
then simple bound |Jn |00 < B/SN exp(—aNh)

The issue again is that s does not depend on h
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Sketch of Arguments: Sparsity Growth Bound

Consider the general N-case

® let Jy = [Hyyn 1 Hpyn—2- - Ho(V2V (uY; 4 (1 — ) Y(—1)n) |oos
then simple bound |Jn |00 < B/SN exp(—aNh)

The issue again is that s does not depend on h

® |mproved bound by using sparsity bound for terms involving
small powers of A and using maximum bound for terms
involving large powers of h

[Tyl < (/3 exp(—aNh) + Vdexp(~r))

forany r > e’ Nhf3
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Sketch of Arguments: Sparsity Growth Bound

Consider the general N-case

® let Jy = [Hyyn 1 Hpyn—2- - Ho(V2V (uY; 4 (1 — ) Y(—1)n) |oos
then simple bound |Jn |00 < B/SN exp(—aNh)

The issue again is that s does not depend on h

® |mproved bound by using sparsity bound for terms involving
small powers of A and using maximum bound for terms
involving large powers of h

[Tnloo < B(y/5r exp(—aNh) + Vdexp(~r)
forany r > e’ Nhf3
* In particular, taking 7y = [e2NhS3 + log\/d] leads to
[N |oo < 2B+/5ry exp(—aNh)

Here r scales with physical time Nh
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Sketch of Arguments: Back to Discretization Errors

Back to the estimate of error(/N)
® For N =2:

El|He(Yin — Yin) 2]

kh
<h /( ORI
k—1)h

kh 1
Sh/( : / E[|He(V?V (uY; + (1 — w)Ye—1)1)) (Y — Yie—1)n) |5 ]dudt
k—1)h Jo

kh

<dhs,, 3 exp(—2ah) / IV = Vi
(k=1)h

=4hs,., 3% exp(—2ah) - O(h?log(2d))
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Sketch of Arguments: Back to Discretization Errors

Putting everything together

® For general IV:

N
error(N) <24 (Z exp(—ah(i — 1))\/§> -0 (h3/2 log(2d)>

i=1
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Sketch of Arguments: Back to Discretization Errors

Putting everything together

® For general IV:

N
error(N) <24 (Z exp(—ah(i — 1))\/§> -0 (h3/2 log(2d)>

i=1

® Therefore, we get

Wa oo (Pl MY T) < exp(—aNh)VdWs g (pgn, ©) 4 error(N)
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Sketch of Arguments: Back to Discretization Errors

Putting everything together

® For general IV:

N
error(N) <24 (Z exp(—ah(i — 1))\/§> -0 (h3/2 log(2d)>

i=1

® Therefore, we get
Wa oo (Pl MY T) < exp(—aNh)VdWs g (prn, 7) + error(N)

® Using sy = O((k 4+ 1)") and taking N = [log(}faﬂh

241

1
Wa oo (p(k+ Nyhs ™) < §W2,e°° (P, m)+1/ hlog(2d) (O(g log(Qd)))

24/27



Sketch of Arguments: Back to Discretization Errors

Putting everything together

® For general IV:

i=1

N
error(N) <24 (Z exp(—ah(i — 1)),/3,«1.) -0 (h3/2 log(2d)>
® Therefore, we get
Wa pos (P(kt- Ny T) < exp(—aNh)\/EWQ’goo (prn, ™) + error(N)

log(2\/a)-|
ha

® Using s = O((k +1)") and taking N = |

1 LR
Wa oo (p(k+ Nyhs ™) < §W2,e°° (P, m)+1/ hlog(2d) (O(g log(Qd)))

241

® Finally Wy ¢ (m4, 7) < /hlog(2d) (O (£ log(2d)))
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Roadmap of this Talk

Generalization with Asymptotic Arguments
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Asymptotic Arguments for the Bias of Observables

Bias of Observables [chen, Cheng, Niles-Weed, Weare 2024]
Assume f is sufficiently regular and | fm = 0. Then, it holds that

[1m= [ 1m=qn( [ 2ar+ 9 0gnB)m) + o)

Moreover, we also have the following formula:

[tm= [ gm == ( a5+ s8108m7) + ot
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Asymptotic Arguments for the Bias of Observables

Bias of Observables [chen, Cheng, Niles-Weed, Weare 2024]
Assume f is sufficiently regular and [ f7 = 0. Then, it holds that

[om= [ gm=gn( [ 287+ 91087 B0)7 ) + ot

Moreover, we also have the following formula:

/fﬂf/fwh:—ih (/(Af+fAlog7r)7r) +o(h)

Poisson argument: Let £ and £, be the generators of Langevin
dynamics and unadjusted Langevin [Mattingly, Stuart, Tretyakov 2010]
e Lu=Vlogm - Vu+ Au,
Lhu(z) = L(Efu(z + hV logn(z) + V2he)] - u(x))
® Let Lu = f. Then, we get

/fﬂ—/fﬂh——/L’uwh—/(ﬁhu—ﬁu)wh,

25/27



Delocalization of Bias for Observables

Bias of Observables [chen, Cheng, Niles-Weed, Weare 2024]
Assume f is sufficiently regular and [ f7 = 0. Then, it holds that

[om= [ im=gn ([ 2ar+ 9 108nB)7) + o)

Moreover, we also have the following formula:

/fw—/fﬂh:—ih (/(Af+fAlog7r)7r) + o(h)

° If m(z) = N(a;m, %), then [ f(Alogm)m = 0. The first order
term [ wA f only depends on the coordinates that f takes

® This delocalization of observable bias can be generalized to
m(z) o< exp(=V(2)) < N'(2;m, ¥) exp(-U())

i.e., perturbation of Gaussians
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Summary

A “delocalization of bias” phenomenon for unadjusted Langevin )

Nearly d-independent step size and complexity
® Phenomenon not shared by unbiased schemes

® We prove it for log-concave Gaussians and sparse potentials

Not hold for some potentials with strong, dense interactions

Asymptotic arguments for general observables and potentials
(up to first order)

Extension to general dynamics and distributions?
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