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Success of generative modeling

Generative modeling J

Goal: draw new samples from m, given data {z;} | ~ 7

DALL-E 3 Sora Alpha Fold 3

Breakthrough in computer vision and success extended to sciences

DALL'E 3: https://openai.com/index/dall-e-3/
Sora: https://openai.com/sora/
Alpha Fold 3: https://deepmind.google/science/alphafold/
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Challenge: field data with a wide range of Fourier spectra
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Figure: Examples of data samples from Matérn Gaussian processes (left
panel) and invariant measure of stochastically forced Navier-Stokes (middle
panel). The right panel shows their energy and enstrophy spectra

> Precise fine scale accuracy is numerically challenging
> Existing function space framework often aims for a different goal
of coarse scale stability (stable under resolution refinement)

Function space generative models [Lim et al 2023], [Hagemann, Ruthotto, Steidl, Yang 2023],
[Pidstrigach, Marzouk, Reich, Wang 2023], [Kerrigan, Migliorini, Smyth 2023], etc.

Wavelets and multiscale generative models [Guth, Coste, Bortoli, Mallat 2022], etc. 30



State of the art methodology: flow and diffusion

Recent advances in generative modeling driven by building dynamics
of measures that iteratively refine the generation to the desired

ODE SDE

P(2) vs time / " P(2) vs time /
Flow matching, rectified flow, stochastic interpolants, ...
[Sohl-Dickstein et al 2015], [Ho, Jain, Abbeel 2020], [Song et al 2021], [Peluchetti 2021], [De

Bortoli et al. 2021], [Liu, Gong, Liu 2022], [Albergo, Vanden-Eijnden, 2022], [Lipman et al 2022],
[Albergo, Boffi, Vanden-Eijnden 2023], [Shi et al 2023], etc.
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Simple summary of methodology in one slide

» Corruption path via interpolation between data and noise

It:atz+ﬂt:v1, a0=61=1,a1=,80=1

» Generation dynamics via numerically solving
dX; = by(Xy)dt, by(z) = E[L|]; = ]
Thm: for such b, it holds X; ~ p* the target [Gysngy 198¢] )

» b; can be learned from data using the objective
1
winL() = [ E{lb(r) - 1) a
0
where the expectation is replaced by empirical averages

[Liu, Gong, Liu 2022], [Albergo, Vanden-Eijnden, 2022], [Lipman, Chen, Ben-Hamu, Nickel, Le
2022], [Albergo, Boffi, Vanden-Eijnden 2023], etc. 5/19



Gaussian measure example

Case study: z white noise and 71 ~ N(0,Cy) with C; = (—A +1)73
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» Much more costs when resolution (or dimension) increases

» Many advanced integration methods can help. Fundamentally,
the challenge remains when resolution is very fine
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Optimal transport approach and its numerical challenge

Minimal kinetic energy in optimal transport approaches
min E[b: () 3]

st Xy = by(Xt), Xo ~ N(0,1), X, ~ p*
» Benamou-Brenier formula [Benamou, Brenier 2000]
> Trajectories are straight lines: one step integration is exact
» However, b, (z) can be spatially highly irregular

[Tsimpos, Ren, Zech, Marzouk 2025]

Widely discussed and pursued in generative models [Liu, Gong, Liu 2022],

[Albergo, Vanden-Eijnden, 2022], etc.

Entropy regularized OT (a.k.a. Schrédinger’s bridges) [Léonard 2014]
Efficient algorithm in generative modeling: [Bortoli, Thornton, Heng, Doucet 2021] [Shi, Bortoli,
Campbell, Doucet 2023], [Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024],
[Pooladian, Niles-Weed 2024], etc.
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How about dynamical transport with minimal Lipschitz energy?

Minimal kinetic energy in optimal transport approaches
min. E[|b(X1) 3
st Xy = by(X3), Xo ~ N(0,1), X ~ p*

> Trajectories are straight lines: one step integration is exact
» However, b;(x) can be spatially highly irregular

Minimal Lipschitz energy
min E[|Ve:(X) 3
st Xy = by(Xt), Xo ~ N(0,1), X1 ~ p*

» Directly lead to desired b; for numerical integration

» Hard to solve optimal b; in general
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Searching for minimal Lipschitz energy in linear stochastic interpolation

Practical strategy: selecting noise z and o4, 8; in I; = a4z + Brxq to
make b, (z) = E[I;|I; = x] has (near-)minimal energy in this class

What would be permissible choices of noise?
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Searching for minimal Lipschitz energy in linear stochastic interpolation

Practical strategy: selecting noise z and o4, 8; in I; = a4z + Brxq to
make b, (z) = E[I;|I; = x] has (near-)minimal energy in this class

What would be permissible choices of noise?

Gaussian: Consider z ~ N(0, Cp) and 21 ~ N(0, C;) are drawn from
Gaussian measures supported on Hilbert space H and z L x;

> Let Cop = 03(—A + 721)%0 and C; = 0?(—A + 72I) =%
» Thm: b;,¢ < 1 is bounded and Lipschitz if and only if sg < s1

General: Consider z ~ N(0, Cy) and 21 ~ p* compactly supported
(or smoothed version) in the Cameron-Martin space of the noise

» Thm: b;,t < 1is bounded and Lipschitz
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(or smoothed version) in the Cameron-Martin space of the noise

» Thm: b;,t < 1is bounded and Lipschitz

V

Wellposedness: noise should be rougher, or at least as rough as, data
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Matching smoothness (spectrum noise) works for Gaussian
Target p* = N(0, C1), where C = o?(—A + 721)7%1,51 =3
» Discretize on N x N grid points

» Choose noise to be either white or spectrum noise
» Standard schedule oy =1 —1t,8; =t
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Figure: Energy spectra of Gaussian fields: comparison between ground
truth, generation using Gaussian spectrum noise, and generation using
white noise. Left: 32 x 32; middle: 64 x 64; right: 128 x 128

> Spectrum noise: Lipschitz bound independent of resolution
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Matching smoothness (spectrum noise) works for near-Gaussian

Target p*(u) o exp (— fol $(Opu(z))? + (1 — u2($))2dx>

» Invariant distribution to stochastic Allen-Cahn
» Discretize on N grid points
» Standard schedule oy =1 —1t,8; =t
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Figure: Energy spectra comparison between ground truth, generation using
Gaussian spectrum noise and using white noise. Left: N = 32; middle:
N = 64; right: N =128

All experiments are done using 2M-parameter-Unet to train b,
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Spectrum noise struggles for stochastic Navier-Stokes

Case study: 2d NSE with stochastic forcing

dw + v - Vwdt = vAwdt — awdt + edn  on T?

> vorticity w, veIocity v, and d’l7 forcing Ergodicity: [Hairer, Mattingly, 2006]

> v =10°, dn random forcing acts on a few Fourier modes
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Figure: Left: sample from invariant distribution; middle: sample from
Gaussian spectrum noise; right: enstrophy spectra of the noise, truth, and
generation. Resolution 128 x 128. 10 steps of RK4 are used

12/19



Rougher noise works better
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Figure: Three types of noises used for constructing generative models:
Gaussian spectrum noise, Gaussian with a rougher spectrum, and white
noise. Resolution 128 x 128. 10 steps of RK4 are used
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Rougher noise: large Lipschitz energy, and optimized schedules

Gaussian: 1 ~ N(0,C) L z ~ N(0,I) in d dims. Let eigenvalues of
Cbel>A1 >\ > >\ >0, Denote M* = 1/\(@

Prop: For the common linear schedule oy = 1 —¢,8; =t

1
| BUVBIEIE = QAF),  max V(a2 = 2(07)
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Rougher noise: large Lipschitz energy, and optimized schedules

Gaussian: 1 ~ N(0,C) L z ~ N(0,I) in d dims. Let eigenvalues of
Cbel> D>\ > >4 > 0. Denote M* = 1/

Prop: For the common linear schedule oy = 1 —¢,8; =t

1
| BUVBIEIE = QAF),  max V(a2 = 2(07)

4

Thm: If we optimize Lipschitz energy over all possible linear
stochastic interpolants I; with scalar schedules, then

(ry=r=1 M* — (M*)1—t
T are 1 Pt = A+ 1

6= M*—1 M*—1

For the optimal solution, || Vb;(z)||2 = & log M* forany ¢,z

V.

» Other analytic results on Gaussian mixtures using Euler-Lagrange

equation and general distributions using Beltrami Identity e



Rougher noise w/ min-Lip schedule works for (near)-Gaussian too
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Figure: Gaussian measure example. Linear schedule versus optimized
schedules. Left: 32 x 32; middle: 64 x 64; right: 128 x 128
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Figure: Stochastic Allen-Cahn example. Linear schedule versus optimized
schedules. Left: N = 32; middle: N = 64; right: N = 128
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Rougher noise w/ min-Lip schedule improves stochastic NS

10-4] = truth
—+— generated-linear-schedule
—— generated-designed-schedule
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Figure: Experiments on stochastically forced Navier-Stokes using white
noise. In all cases, we use 10 RK4 integration steps. Resolution: 128 x 128

> Left: generated samples w/ linear schedule
» Middle: generated samples w/ optimized schedule (M * = 10°)

M*lt M* — M*
be=\—"2pr-1

> Right: enstrophy spectra of truth, noise, and generations
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Case study for forecasting 2d NSE with stochastic forcing

dw + v - Vwdt = vAwdt — awdt + edn  on T?

> Vorticity w, velocity v, and d7 is white-in-time random forcing

» Goal: given data pairs (wy, wyr), forecast wy - |w; for new w,

—— true conditional \
~ — forecast conditional \

109 ToT
true v.s. forecast conditional mean true v.s. forecast conditional std enstrophy spectrum (v.s. k)

Figure: Results for forecasting with lag 7 = 2 (autocorrelation 10%).
Resolution 128 x 128
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Case study for combined forecasting and superresolution

Let w; be of 32 x 32 while w; - is of 128 x 128

2| k=16
10 = truth 3

== super resolution :

== |ow resolution
1073k

100 0T
forecast w4 1 forecast wyy1 enstrophy spectrum (v.s. k)

Figure: Results for probabilistic forecasting with low resolution input
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Conclusion

Design dynamical transport for generative flows of scientific data )

> Strategy: optimize Lipschitz energy in the construction of
dynamical transport, alternative to optimal kinetic energy in
optimal transport

> We discuss detailed theoretical and numerical instantiation of
this strategy in the class of linear stochastic interpolants

» Advantage: resolution robust performance with small costs

General goal: structure/physics preserving techniques for generative
models with improved statistical/numerical performance
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Insights and towards more applications for scientific tasks

k=16

-2
107 — truth :
~ = super resolution :
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1072 -
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forecast w41 enstrophy spectrum (v.s. k)

[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]

@-Zn,MnO, B-ZneMnO, ¥-ZngMnO,
Noisy
structure
Inpainted
structure
Supercell
structure

[Dai, Zhong, Deng, Chen, Ceder 2024]

Real-world imaging system
Fourier spectrum

> TR

= L S

B 3
Interferometry ¢ 3 -y

i g =S

HERS Y,

& )

al 12 .

i o~

E-W frequency (u)
Diffusion model image prior

[Sun, Wu, Chen, Feng, Bouman 2023]
[Wu, Sun, Chen, Zhang, Yue, Bouman 2024]
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Probabilistic imaging
(real data black hole imaging)
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Black hole imaging: Combining generative models and MCMC
[Sun, Wu, Chen, Feng, Bouman 2023], [Wu, Sun, Chen, Zhang, Yue, Bouman 2024]

Real-world imaging system

Fourier spectrum A 3 Bayes inverse problem

= T M . .
Interferometry & /7 € » Data: nonlinear functions of
— Y R
2Ty Fourier components of the
E s . .
image (very sparse and with

E-W frequency (u)

Diffusion model image prior strong noise)

» Prior: black holes simulated
based on General Relativistic
Magnetohydrodynamics
(GRMHD)

Goal: sample ppost X Pprior X Liikelihood

Approach: learn ppior Using generative dynamics and combine with
designed MCMC dynamics to sample ppst
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Experiments with real data: PnP-DM (plug-and-play diffusion models)

PnP-DM uses split-Gibbs (alternating prior and likelihood update)

Real-world imaging system | Posterior sampl |

Fourier spectrum

A Interferometry
_—

NS frequency ()

Proposed
method

E-W frequency (1)
Diffusion model image prior

Official image by EHT

* Experiment is performed with
real data for the M87 black hole
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Black hole imaging We adopted the same BHI setup as in [61]]. The relationship between the
black hole image and each interferometric measurement, or so-called visibility, is given by

Vi, =glgh- e o9l - F} y(x) + 1m0y €C, (14)

where a and b denote a pair of telescopes, ¢ represents the time of measurement acquisition, and
F!,(x) is the Fourier component of the image @ corresponding to the baseline between telescopes a
and b at time ¢. In practice, there are three main sources of noise in (I4): gain error g, and g, at the
telescopes, phase error ¢, and ¢!, and baseline-based additive white Gaussian noise 7,,5. The gain
and phase errors stem from atmospheric turbulence and instrument miscalibration and often cannot
be ignored. To correct for these two errors, multiple noisy visibilities can be combined into data
products that are invariant to these errors, which are called closure phase and log closure amplitude
measurements [11]]

Ve = £(VapVbeVae) 1= AT 4 (@),
t t
. VElIVEl\ _ 4
Bl (IV:,CIIV:‘,dI = AT (@)

where Z computes the angle of a complex number. Given a total of M telescopes, there are in
total W closure phase and w log closure amplitude measurements at time ¢, after
eliminating repetitive measurements. In our experiments, we used a 9-telescope array (M = 9) from

the Event Horizon Telescope (EHT) and constructed the data likelihood term based on these nonlinear

closure quantities. Additionally, because the closure quantities do not constrain the total flux (i.e.

summation of the pixel values) of the underlying black hole image, we added a constraint on the total
flux in the likelihood term. The overall potential function of the likelihood is given by
logcamp logcamp |12 flux || 2
A5 () — w13 [AG"" () —ya I3 1w —y™ |,
flay)=> o2 +3 + . (15)

2
2a’flux

2
tc cph td 2alogcamp

In this equation, yf1* is the total flux of the underlying black hole, which can be accurately measured.

We use y = (yc"h,ybg“"‘p, yﬂ“x) to denote all the measurements and ¢, d as the indices for
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Black hole imaging: experiments with two modal synthetic data

(@ Ground truth Mode 2 Mode 3

32
2 19.79

aBew ueapy

sa|dwes Jous1soy

®
fully sa

» DPS: existing benchmark [chung et al 2022]
» Ours: PnP-DM (plug-and-play diffusion models) using split

Gibbs, with mathematical consistency guarantee
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Technical Details on
Choosing Noise

27/19



The choice of noise: initial time well-posedness for discretized GPs

» Consider D = [0, 1] and Gaussian process £ ~ GP(0, k) with

y—z
k(y,z) = exp(—|| 572 ||2)

> Let z; € RY be adiscretization of ¢ with stepsize h = 1/N
» Taking z ~ N(0,Ix), which preserves variance since

E[||2[I3] = N = E[||21]3]
» With this z and I; = oz + B,x1, it holds
bi(z) = E[L|I; = ] = By(t)x

» We have lim;_,¢ limy_,~ || By (t)||2 = oo
» Thus: drift b;(x) diverges in this limit

Need z ~ N(0, N1y) converging to non-trivial white noise
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The choice of noise: initial time well-posedness for function space GPs

» Consider z ~ N(0, Cp) and 21 ~ N(0, C7) are drawn from
Gaussian measures supported on Hilbert space H and z 1 x;
» Given Iy = ayz + Pyxq, it holds

bi(z) = E[I,|I; = 2] = B(t)x
where B(t) is the linear operator defined as
B(t) = (q&eCo + BeBCh) (0f Co + BEC1) ™
> limy 0 || B(t)||n = o if C1C; ! is an unbounded operator
Let Co = o3 (—A + 72I)~%0 and C; = o3(—A + 72) 751,

> (3’100_1 is bounded if and only if 5o < 57
» noise N(0, Cp) is rougher, or at least as rough as, data N(0, C1)

Generalizing to non-Gaussian measures: b; is bounded near initial
time when data are in the Cameron-Martin space of noise
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Probabilistic forecasting
(benchmarking Navier-Stokes)
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Goal: Build a generative dynamics Xo<<1 from g to z1 ~ p*(-|x¢)
[Chen, Goldstein, Hua, Albergo, Boffi, Vanden-Eijnden 2024]

Methodology: Construct the stochastic process
Is = aszo + Bsx1 + osWs
> ap=p1=1landa; = By = 01 = 0sothat Iy = zg, [1 = 1
» TV is a Brownian motion with W' L (¢, z1)
Define b, (x, 29) = E[dusxo + Bsx1 + 6sWi|Is = x, 2] and
dXs = bs(Xs, x0)ds + 0sdWs, Xs—o =

It holds Law(X ) = Law(Is|zg). In particular Xs—; ~ p*(+|z0)

> Why? Ito’s formula: dI; = (&sxo + By + csWs)ds + osdWs

» Replacing drift by E[csxo + By + osWis|Is, xo| makes the SDE
Markovian while keeping time-marginals unchanged
Mimicking lemma, Markov projection [Gydngy 1986]
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Learning the generative dynamics from data

The drift b, (x, 20) = E[dszo + Be1 + 0 W |1 = x, 2] J

» Fact: the drift bs(x, zo) is the unique minimizer of

1
Ly[bs] = / E[|bs(Is, z0) — cismo — Bsar — 6sW|*]ds
0

with sampled data (x¢, 1) we can evaluate L;
» Algorithm: parametrize Bs by neural nets, optimize L,
» Generative model: for any z, integrate to s = 1 the SDE
dX, = BS(XS,xO)dS + o, dWy, Xoo = 0

This will approximately sample p*(-|zo) if bs ~ by
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Conditional generation and applications in probabilistic forecasting

A benchmark case study: 2d NSE with stochastic forcing

dw 4 v - Vwdt = vAwdt — awdt + edn  on T?

» vorticity w, velocity v, and d is white-in-time random forcing
Ergodicity: [Hairer, Mattingly, 2006]

Set-up: given data pairs (w, w4 ) at many ¢ under stationarity

Task: build a generative model that takes a state w; as input and
samples the conditional distribution p*(-|w;) of Wiy |wy

where we use zo = w; and £1 = w4, in the notation
33/19



Experiments: Forecasting 2D stochastically forced NSE

101k

1000

10-1k

1072}

—— true conditional

— = forecast conditional

" 10° 107
true v.s. forecast conditional mean true v.s. forecast conditional std enstrophy spectrum (v.s. k)

Figure: Lag 7 = 2 (autocorrelation 10%). Resolution 128 x 128, using 200K
data pairs for training 2M-parameter-Unet

» Can be viewed as a surrogate model: for this example, 100 times
faster than running the stochastic PDE simulation
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A family of SDEs can be used. Which to choose?

Fact: It holds that Law(X) = Law(X?) for
dX? = bi(XY, z0)ds + gsdW
with bd(x, 2¢) = bs(z, z0) + %(gf — 02)V log ps(z|z0)

» Fact due to Fokker-Planck equations and V - (pV log p) = Ap
> Vlog ps(z|zo) is the score, with score an estimator

—

« " g 7 7 1
New “learned” drift: bJ = bs + 5(9‘3 — o2%)score
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Fact: It holds that Law(X) = Law(X?) for
dX? = bi(XY, z0)ds + gsdW
with bd(x, 2¢) = bs(z, z0) + %(gf — 02)V log ps(z|z0)

» Fact due to Fokker-Planck equations and V - (pV log p) = Ap
> Vlog ps(z|zo) is the score, with score an estimator

—

« " g 7 7 1
New “learned” drift: bJ = bs + 5(9‘3 — o2%)score

Many existing studies on how to choose g in generative models
» ODEs versus SDEs, numerical schemes, perturbation analysis

[Song et al 2021], [Song, Meng, Ermon 2021], [Karras, Aittala, Aila, Laine 2022], [Zhang,

Tao, Chen 2023], [Albergo, Boffi, Vanden-Eijnden 2023], [Cao, Chen, Luo, Zhou 2024]

Answer to this question would depend on the choice of “metric”
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KL divergence over path measures as the “metric”: theory and practice

Theorem: Let PX* and PX? denote the path measures of

» the truth SDE solution X9 = (X{),c[0,1) with drift b9

> the approximation X9 = (ng)se[o,l} with learned b9

Then, the path-level KL optimization
min KL[PX ||PX?]
g
has an explicit solution g = ¢" with

3, |2
Vs

d
gf = |2s02— log
5

1 . ﬁs 1
Interpretation: N is

~ “signal-to-noise ratio”

since by definition

Is = aszo + Bsz1 + oW
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KL divergence over path measures as the “metric”: theory and practice

Theorem: Let PX* and PX? denote the path measures of
» the truth SDE solution X9 = (X{),c[0,1) with drift b9
> the approximation X9 = (Xg)se[m} with learned b9

Then, the path-level KL optimization . 5. .
Interpretation: \/;—; is
min KL[PX’ || P*’] , , ,
g ~ “signal-to-noise ratio”

has an explicit solution g = ¢gF with | gince by definition

1/2
Bs / I, = asxg + Bsr1 + osWi
V505

d
gf = (2502 — log
s

SDE with o,dW, SDE with g¥'dW, ODE with Gaussian base

8.49e-3+1.57e-3 2.79e-3+19.19e-4 4.63e-3+9.63e-4

Empirical end-point KL err (total enstrophy of truth v.s. generated samples) ../,



Further insights: What is special about this ¢"'?

Theorem: The optimal XF := X9 is an Féllmer process
> Solution to Schrodinger bridge when one endpoint is point mass

priorj|

XY = argmin KL[PX||PX s.t. Xy ~ p*(:|wo)
X

Standard Follmer: XP™" js 3 Brownian motion
In our algorithm: XP'i" s induced by the choices of o, s, 0

Po

Initial x,

= P1
uncontrolled PX*" xPrior
i

Y :
Schrodinger Follmer

Interpretation: such optimal g™ is a “Bayes”/control solution!

[Schrodinger 1932]. Follmer process [Follmer 1986] wide applications in functional inequality

[Lehec 2013] and in sampling [Zhang, Chen 2021], [Huang et al 2021], [Vargas et al 2023], etc
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Further insights: What is special about this ¢"'?

Theorem: The optimal XF := X9 is an Féllmer process

» Solution to Schrédinger bridge when one endpoint is point mass
XF = argmin KL[PX |[PX™"] s.t. X1 ~ p*(-|xo)
X

Standard Féllmer: XP™°T js a Brownian motion
In our algorithm: X P’ js induced by the choices of a, Bs,05

Outlook: Design physically motivated X P (ongoing and future work)

» Multiscale interpolation I, connected to renormalization group
e.g., [Bauerschmidt, Bodineau, Dagallier 2023]
» Function space noise with spectrum decay

e.g., [Lim et al 2023], [Pidstrigach, Marzouk, Reich, and Wang 2023]

» Improved design choices for better numerical performance
e.g., [Lim, Wang, Yu, Hart, Mahoney, Li, Erichson 2024]
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Forecasting videos: CLEVER datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A new,
red cube enters the scene. Third row: Real trajectory. Fourth row:
Generated trajectory. A new green cube enters the scene, and collision
physics is respected (green ball hits red cube).
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Forecasting videos: quantitative results

KTH CLEVRER
Method 100k 250k 100k 250k
RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 3913 547  39.31
Auto-enc. 33.45 33.45 279 279

Table: FVD computed on 256 test set videos, with the model generating 100
completions for each video. Results are reported for 100k grad steps and
250k. The auto-enc represents the FVD of the pretrained encoder-decoder
vs the real data. It serves as a bound on the possible model performance, as
the modeling is done in the latent space of a pre-trained VQGAN.

RIVER [Davtyan, Sameni, Favaro 2023]
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