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Context

Forecasting Problem J

Given time series (Yxr)kez, predict y(,i 1), from new yj.,

e Examples: fluids, daily weather measurements, video frames

® Assume successive observations ~ joint PDF 1(Ykr, Y(x+1)7)

® Goal is conditional sampling y41)r ~ 1(-|yxr)
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Deterministic Forecasting

Goal of Deterministic Forecasting
Output a single forecast by learning a function F J
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Linear regression, kernel regression, Koopman operator, ...
e.g., [Dellnitz, Junge 1999], [Berry, Giannakis, Harlim 2015], [Kutz, Brunton, Brunton,

Proctor 2016], [Alexander, Giannakis 2020], ...
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Deterministic Forecasting

Goal of Deterministic Forecasting J

Output a single forecast by learning a function F

xy = F(x1)

x1=Fke)  xy = Fy(xn_1) Yty

Continuum limit dxg = by(x,)ds

| I
Expressive dynamical parametrization: e.g., deep neural nets, neural ODEs, operators

e.g. [Li et al, 2021], [Jiang, Lu, Orlova, Willett, 2023], ...
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Deterministic Forecasting

Goal of Deterministic Forecasting J

Output a single forecast by learning a function F

xy = F(x1)

x1=Fke)  xy = Fy(xn_1) Yty

Continuum limit dxg = by(x,)ds

| I
Expressive dynamical parametrization: e.g., deep neural nets, neural ODEs, operators

e.g. [Li et al, 2021], [Jiang, Lu, Orlova, Willett, 2023], ...

however deterministic forecast overlooks uncertainties :(
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Probabilistic Forecasting

Goal of Probabilistic Forecasting

Output an ensemble of forecasts by learning a distribution

Yiee A g1yl Yir)

e SRR

Stochastic Koopman operators e.g., [Wanner, Mezic 2022], [Zhao, Jiang 2023]
Learning SDEs and probabilistic models e.g., Gaussians, neural SDEs, ...
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Probabilistic Forecasting

Goal of Probabilistic Forecasting J

Output an ensemble of forecasts by learning a distribution

AV ge+1)zVier)

Goal: Learn an SDE that maps a Diracs at yp- t0 [i(Y(r+1)r|Vkr)
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Roadmap of This Talk

Building the SDE with Stochastic Interpolants
Tunnable Diffusions, KL Optimization and Follmer's Processes

Forecasting Stochastic NSE and Videos
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Stochastic Interpolants
Let z¢p and 1 denote the current and forecasting state

Stochastic Interpolants

Define the stochastic process Iy = ax0 + Bsx1 + o5 W
e ogpg=pF1=1landa; =By=01=0~ Iy =x9,11 =21
® (zg,x1) ~ p(xo, 1) joint distribution
* W = (Ws)selo, is @ Wiener process with W L (zq, 1)

* Fact: dI, = (ciswo + Bsx1 + 6sWs)ds + o5dW,
e Define the SDE
dXs = bs(Xs,w0)ds + 05dWs, Xs—o = w0
where by(z, 20) = Elcisxo + B + 6sWi| Ly = 2, 0]
e |t holds Law(X) = Law(Is|xg). In particular Xs—1 ~ u(-|zg)

[Albergo, Vanden-Eijnden, 2022], [Albergo, Boffi, Vanden-Eijnden 2023]

See also [Liu, Gong, Liu 2022], [Lipman et al 2022], ... 8/22



Learning the Drift via Square Loss Regression

I = asxo + le'l + oW
bs(x,iﬂo) = E[dslﬁo + ﬁsxl + O.'sWsus =, xO] J

Conditional expectation ~» square loss regression

The drift bs(x, zo) is the unique minimizer of

1
Ly[bs] = / E[|bs(Is, 20) — cismo — Bswy — 6sWs|*]ds
0

Loss function is simulation-free: W, < V/sz with z ~ N(0,1)

Parametrize b by neural nets and optimize L; via SGD
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A Synthetic Example: Multimodal Jump Processes

2D particle jump-diffusion dynamics:

® Between the jumps, the particle moves according to the
Langevin dynamics da; = V log pgmm (¢ )dt + /2dW;

e At jump times specified by a Poisson process with rate A = 2,
the particle is rotated counterclockwise by an angle 27/5
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Forecasting A Synthetic Multimodal Jump Processes

Angular KDE Ground Truth KDE Forecasted KDE
=—truth
- forecast
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Roadmap of This Talk

Tunnable Diffusions, KL Optimization and Follmer's Processes
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Tunnable Diffusions for SDEs

Trading drift and diffusion terms
V - (pVlog p) = Ap so can trade drift —V log p with diffusion dWJ
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Tunnable Diffusions for SDEs

Trading drift and diffusion terms
V - (pVlog p) = Ap so can trade drift —V log p with diffusion dWJ

® For dX, = bs(Xs,w0)ds + osdWs, Law(Xs) = Law(X7?) where
ng = b!s](Xga ."L‘())ds + gdes
with bJ(z, z0) = bs(z,20) + (92 — 02)V log ps(z|zo)

o ps(z|zo) is the PDF of X, 2 I,|z
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Tunnable Diffusions for SDEs

Trading drift and diffusion terms
V - (pVlog p) = Ap so can trade drift —V log p with diffusion dWJ

® For dX, = bs(Xs,w0)ds + osdWs, Law(Xs) = Law(X7?) where
dX9 = bI(XI, x0)ds + gsdW,
with b (z, z0) = bs(w, 20) + 3(g2 — 02)V log ps(x|z0)
® ps(z|xp) is the PDF of X 4 Is|zo, with

V log p.s(a:\xo) = A (Bsbs(z, x0) — cs(z, x0))
° As - [so—s(ﬂgo—s - Bsd—s)]71 .
® Cs(l', 1’0) = ﬂsx + (ﬁsds - 55045)%

e A family of SDEs serve for generation purposes
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Tunnable Diffusions for SDEs

Trading drift and diffusion terms
V - (pVlog p) = Ap so can trade drift —V log p with diffusion dWJ

® For dX, = bs(Xs,w0)ds + osdWs, Law(Xs) = Law(X7?) where
dX{ = b{(X{, wo)ds + gsdWs
with b (z, z0) = bs(w, 20) + 3(g2 — 02)V log ps(x|z0)
® ps(z|xp) is the PDF of X 4 Is|zo, with

V log p.s(a:\xo) = A (Bsbs(z, x0) — cs(z, x0))
° As - [so—s(ﬂgo—s - Bsd—s)]71 .
® Cs(l', 1’0) = ﬂsx + (ﬁsds - 55045)%

e A family of SDEs serve for generation purposes

We can estimate b first and then adjust both the noise amplitude
gs and the drift b9 a-posteriori without having to retrain b J
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Optimize over g

Question
Any choice of g that is optimal? J
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Optimize over g

Question
Any choice of g that is optimal?

Criteria: Consider the KL between the path measures of
* the truth SDE solution X9 = (X{),c[o,1] with drift b

* the approximation X9 = (X¢),c[o.1) with a learned b
which upper bounds the KL between densities of X¢ and X7
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Optimize over g

Question
Any choice of g that is optimal?

Criteria: Consider the KL between the path measures of

* the truth SDE solution X9 = (X{),c[o,1 with drift b

* the approximation X9 = (X¢),c[o.1) with a learned b
which upper bounds the KL between densities of X¢ and X7

Formula: by Girsanov's theorem

e _ [Tt BeAy(g? — oD
KL = [ R
0 2|E7s|

where L, = E%0 [‘85(15,1'0) — bs(Is, 20)]?]

Lgds
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Optimize over g

Question
Any choice of g that is optimal?

Criteria: Consider the KL between the path measures of
* the truth SDE solution X9 = (X{),c[o,1 with drift b

e the approximation X9 = (Xg)se[o,l] with a learned b
which upper bounds the KL between densities of X¢ and X7

Formula: by Girsanov's theorem

e _ [Tt BeAy(g? — oD
KL = [ R
0 2|E7s’

where L, = E%0 [‘85(15,1'0) — bs(Is, 20)]?]

Lgds

Claim: KL is minimized if we set g, = g& with

B, (/2
Vs0s

F
9s =

d
2502 — log
5
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Follmer's Processes

Theorem J

If Bs/(\/sos) is non-decreasing, then X9 is an Féllmer process

® Fo6llmer processes solve the Schrédinger bridge problem
when one endpoint is a point mass, offering an
entropy-regularized solution to optimal transport

e Usually defined by minimizing KL against the Wiener process
subject to constraints on the endpoints

e Our result offers a generalization and new interpretation of
Féllmer as the minimizer of the KL of the exact forecasting
process from the estimated one, which is more tailored to
statistical inference

Follmer process [Follmer, 1986] wide applications
In functional inequality [Lehec 2013], [Eldan, Lehec, Shenfeld 2020], ...
In sampling: [Zhang, Chen 2021], [Wang, Jiao, Xu, Wang, Yang 2021], [Huang et al,

2021], [Vargas et al, 2023], [Liu et al, 2023], ... 14/22



Other Design Considerations

Behavior of Drift at s =0

Assume the density of pu(:|zo) is upper bounded by an exponential
tailed density, and o > 0, then 5y = 0 is the sufficient and
necessary condition for lims_,q |bs(x, z¢)| < oo, for any z, z

® When Sy = 0, lim,_,o |Vbs(z, 20)| < oo as well
 Thus By = 0 can be beneficial for the Lipschitz bound of b

® Practical significance: 8, = s® lead to more stable training
than Bs = s

® We take 3, = s? throughout our experiments
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Roadmap of This Talk

Forecasting Stochastic NSE and Videos
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Forecasting 2D Stochastically Forced Navier Stokes

2d NSE with Stochastic Forcing
dw + v - Vwdt = vAwdt — awdt + edn  on T? J

v =V = (=0y1, 0,1) is the velocity
1 is the stream function, solution to —AY = w

dn is white-in-time random forcing on a few Fourier modes
e v=103%a=01e=1

Ergodicity shown in [Hairer, Mattingly, 2006]

Goal: Forecast w4, from w; under stationarity J
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101k

1000

10-1k

10-2F

—— true conditional
— = forecast conditional

10° 10!

true v.s. forecast conditional mean true v.s. forecast conditional std enstrophy spectrum (v.s. k)

Figure: Probabilistic forecasting with lag 7 = 2 (autocorrelation 10%).
Resolution 128 x 128, using 200K data pairs for training
2M-parameter-Unet for 50 epochs

® Necessity of probabilistic over deterministic forecasting

® Forecasting efficiency: for this example 100 times faster
than running the PDE simulation
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Effects
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Figure: The 1D conditional distributions of total enstrophy and total
energy of wyy,, given a fixed initial vorticity field w; and 7 = 1. Here we
compare between the truth, generated samples via SDEs with o,dW, via
SDE with g¥dW, which corresponds to a Féllmer process, and via ODEs
with Gaussian bases a.k.a. conditional flow matching
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Forecasting with Incomplete Observation

Let w; be of 32 x 32 while w;y, is of 128 x 128

101 L

1071

2l k=16
10 — truth .

~ = super resolution :

== |ow resolution
103k —
10° 10!

forecast we 41 forecast w¢ 41 enstrophy spectrum (v.s. k)

Figure: Probabilistic forecasting with low resolution input, using 200K
data pairs for training 2M-parameter-Unet for 50 epochs
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Forecasting Videos: CLEVER Datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A
new, red cube enters the scene. Third row: Real trajectory. Fourth
row: Generated trajectory. A new green cube enters the scene, and
collision physics is respected (green ball hits red cube).
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Quantitative Results

KTH CLEVRER
Method 100k 250k 100k 250k

RIVER 46.690 41.88 60.40 48.96
PFl (ours) 44.38 39.13 54.7 39.31

Auto-enc. 3345 3345 279 2.79

Table: FVD computed on 256 test set videos, with the model generating
100 completions for each video. Results are reported for 100k grad steps
and 250k. The auto-enc represents the FVD of the pretrained
encoder-decoder vs the real data. It serves as a bound on the possible
model performance, as the modeling is done in the latent space of a
pre-trained VQGAN.

RIVER [Davtyan, Sameni, Favaro 2023]
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Summary

Probabilistic forecasting with stochastic generative dynamiCSJ

® L[earn dynamics from point mass to conditional distribution
® Build SDE dynamics with stochastic interpolants
e Tune diffusion coefficients to optimize KL estimation error

e Optimized processes are Follmer processes, which are also
entropy minimizing Schrodinger bridges

® Design choices of interpolants for improved regularity
® High-Dim experiments: 2D stochastic Navier-Stokes, videos

e Future work: further design using connections to renormalizing
group flows, and generative modeling in function space

Thank You!
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