Probabilistic Forecasting

with Stochastic Interpolants and Föllmer Processes

Yifan Chen

Courant Institute, New York University

joint with Michael Albergo, Nicholas Boffi, Mark Goldstein, Mengjian Hua, Eric Vanden-Eijnden

Context

Forecasting Problem

Given time series $(y_{k\tau})_{k\in\mathbb{Z}}$, predict $y_{(k+1)\tau}$ from new $y_{k\tau}$

- Examples: fluids, daily weather measurements, video frames
- Assume successive observations \sim joint PDF $\mu(y_{k\tau}, y_{(k+1)\tau})$
- Goal is conditional sampling $y_{(k+1)\tau} \sim \mu(\cdot|y_{k\tau})$

Figure credited to Google online search

Deterministic Forecasting

Goal of Deterministic Forecasting

Output a single forecast by learning a function \hat{F}

Linear regression, kernel regression, Koopman operator, ...

e.g., [Dellnitz, Junge 1999], [Berry, Giannakis, Harlim 2015], [Kutz, Brunton, Brunton, Proctor 2016], [Alexander, Giannakis 2020], ...

Deterministic Forecasting

Goal of Deterministic Forecasting

Output a single forecast by learning a function F

Deterministic Forecasting

Goal of Deterministic Forecasting

Output a single forecast by learning a function F

e.g. [Li et al, 2021], [Jiang, Lu, Orlova, Willett, 2023], ...

however deterministic forecast overlooks uncertainties :(

Probabilistic Forecasting

Goal of Probabilistic Forecasting

Output an ensemble of forecasts by learning a distribution

Stochastic Koopman operators e.g., [Wanner, Mezic 2022], [Zhao, Jiang 2023] Learning SDEs and probabilistic models e.g., Gaussians, neural SDEs, ...

Probabilistic Forecasting

Goal of Probabilistic Forecasting

Output an ensemble of forecasts by learning a distribution

Goal: Learn an SDE that maps a Diracs at $y_{k\tau}$ to $\hat{\mu}(y_{(k+1)\tau}|y_{k\tau})$

- 1 [Building the SDE with Stochastic Interpolants](#page-8-0)
- 2 [Tunnable Diffusions, KL Optimization and Föllmer's Processes](#page-13-0)
- **3** [Forecasting Stochastic NSE and Videos](#page-24-0)

1 [Building the SDE with Stochastic Interpolants](#page-8-0)

- 2 [Tunnable Diffusions, KL Optimization and Föllmer's Processes](#page-13-0)
- **3** [Forecasting Stochastic NSE and Videos](#page-24-0)

Stochastic Interpolants

Let x_0 and x_1 denote the current and forecasting state

Stochastic Interpolants

Define the stochastic process $I_s = \alpha_s x_0 + \beta_s x_1 + \sigma_s W_s$

•
$$
\alpha_0 = \beta_1 = 1
$$
 and $\alpha_1 = \beta_0 = \sigma_1 = 0 \leadsto I_0 = x_0, I_1 = x_1$

•
$$
(x_0, x_1) \sim \mu(x_0, x_1)
$$
 joint distribution

•
$$
W = (W_s)_{s \in [0,1]}
$$
 is a Wiener process with $W \perp (x_0, x_1)$

• Fact:
$$
dI_s = (\dot{\alpha}_s x_0 + \dot{\beta}_s x_1 + \dot{\sigma}_s W_s) ds + \sigma_s dW_s
$$

• Define the SDE $dX_s = b_s(X_s, x_0)ds + \sigma_s dW_s, \; X_{s=0} = x_0$ where $b_s(x,x_0) = \mathbb{E}[\dot{\alpha}_s x_0 + \dot{\beta}_s x_1 + \dot{\sigma}_s W_s | I_s = x, x_0]$ • It holds Law $(X_s) =$ Law $(I_s|x_0)$. In particular $X_{s=1} \sim \mu(\cdot|x_0)$

[Albergo, Vanden-Eijnden, 2022], [Albergo, Boffi, Vanden-Eijnden 2023] See also [Liu, Gong, Liu 2022], [Lipman et al 2022], ...

Learning the Drift via Square Loss Regression

- $I_s = \alpha_s x_0 + \beta_s x_1 + \sigma_s W_s$
- $b_s(x, x_0) = \mathbb{E}[\dot{\alpha}_s x_0 + \dot{\beta}_s x_1 + \dot{\sigma}_s W_s | I_s = x, x_0]$
- Conditional expectation \rightsquigarrow square loss regression
- The drift $b_s(x, x_0)$ is the unique minimizer of

$$
L_b[\hat{b}_s] = \int_0^1 \mathbb{E} \big[|\hat{b}_s(I_s, x_0) - \dot{\alpha}_s x_0 - \dot{\beta}_s x_1 - \dot{\sigma}_s W_s|^2 \big] ds
$$

- Loss function is simulation-free: $W_s \stackrel{d}{=} \sqrt{s}z$ with $z \sim {\sf N}(0,{\sf l})$
- Parametrize \hat{b}_s by neural nets and optimize L_b via SGD

A Synthetic Example: Multimodal Jump Processes

2D particle jump-diffusion dynamics:

- Between the jumps, the particle moves according to the Langevin dynamics $dx_t = \nabla \log \rho_{\mathsf{GMM}}(x_t) dt + \sqrt{2} dW_t$
- At jump times specified by a Poisson process with rate $\lambda = 2$. the particle is rotated counterclockwise by an angle $2\pi/5$

Forecasting A Synthetic Multimodal Jump Processes

1 [Building the SDE with Stochastic Interpolants](#page-8-0)

2 [Tunnable Diffusions, KL Optimization and Föllmer's Processes](#page-13-0)

3 [Forecasting Stochastic NSE and Videos](#page-24-0)

Trading drift and diffusion terms

 $\nabla \cdot (\rho \nabla \log \rho) = \Delta \rho$ so can trade drift $-\nabla \log \rho$ with diffusion dW

Trading drift and diffusion terms $\nabla \cdot (\rho \nabla \log \rho) = \Delta \rho$ so can trade drift $-\nabla \log \rho$ with diffusion dW

• For $dX_s = b_s(X_s, x_0)ds + \sigma_s dW_s$, Law $(X_s) =$ Law (X_s^g) where $dX_s^g = b_s^g(X_s^g, x_0)ds + g_s dW_s$ with $b_s^g(x, x_0) = b_s(x, x_0) + \frac{1}{2}(g_s^2 - \sigma_s^2) \nabla \log \rho_s(x|x_0)$

•
$$
\rho_s(x|x_0)
$$
 is the PDF of $X_s \stackrel{d}{=} I_s|x_0$

Trading drift and diffusion terms $\nabla \cdot (\rho \nabla \log \rho) = \Delta \rho$ so can trade drift $-\nabla \log \rho$ with diffusion dW

• For $dX_s = b_s(X_s, x_0)ds + \sigma_s dW_s$, Law $(X_s) =$ Law (X_s^g) where $dX_s^g = b_s^g(X_s^g, x_0)ds + g_s dW_s$

with $b_s^g(x, x_0) = b_s(x, x_0) + \frac{1}{2}(g_s^2 - \sigma_s^2) \nabla \log \rho_s(x|x_0)$

 $\bullet~~ \rho_s(x|x_0)$ is the PDF of $X_s\stackrel{d}{=}I_s|x_0$, with

$$
\nabla \log \rho_s(x|x_0) = A_s (\beta_s b_s(x, x_0) - c_s(x, x_0))
$$

\n•
$$
A_s = [s\sigma_s(\dot{\beta}_s \sigma_s - \beta_s \dot{\sigma}_s)]^{-1}
$$

\n•
$$
c_s(x, x_0) = \dot{\beta}_s x + (\beta_s \dot{\alpha}_s - \dot{\beta}_s \alpha_s)x_0
$$

• A family of SDEs serve for generation purposes

Trading drift and diffusion terms $\nabla \cdot (\rho \nabla \log \rho) = \Delta \rho$ so can trade drift $-\nabla \log \rho$ with diffusion dW

• For $dX_s = b_s(X_s, x_0)ds + \sigma_s dW_s$, Law $(X_s) =$ Law (X_s^g) where $dX_s^g = b_s^g(X_s^g, x_0)ds + g_s dW_s$

with $b_s^g(x, x_0) = b_s(x, x_0) + \frac{1}{2}(g_s^2 - \sigma_s^2) \nabla \log \rho_s(x|x_0)$

 $\bullet~~ \rho_s(x|x_0)$ is the PDF of $X_s\stackrel{d}{=}I_s|x_0$, with

$$
\nabla \log \rho_s(x|x_0) = A_s (\beta_s b_s(x, x_0) - c_s(x, x_0))
$$

\n•
$$
A_s = [s\sigma_s(\dot{\beta}_s\sigma_s - \beta_s\dot{\sigma}_s)]^{-1}
$$

\n•
$$
c_s(x, x_0) = \dot{\beta}_s x + (\beta_s \dot{\alpha}_s - \dot{\beta}_s \alpha_s)x_0
$$

• A family of SDEs serve for generation purposes

We can estimate b first and then adjust both the noise amplitude g_s and the drift b^g *a-posteriori w*ithout having to retrain b

Question

Any choice of g that is optimal?

Question

Any choice of q that is optimal?

Criteria: Consider the KL between the path measures of

- the truth SDE solution $X^g = (X^g_s)_{s \in [0,1]}$ with drift b
- $\bullet\,$ the approximation $\hat{X}^g=(\hat{X}^g_s)_{s\in[0,1]}$ with a learned \hat{b}

which upper bounds the KL between densities of X_1^g $_1^g$ and $\hat X^g_1$

Question

Any choice of q that is optimal?

Criteria: Consider the KL between the path measures of

- the truth SDE solution $X^g = (X^g_s)_{s \in [0,1]}$ with drift b
- $\bullet\,$ the approximation $\hat{X}^g=(\hat{X}^g_s)_{s\in[0,1]}$ with a learned \hat{b} which upper bounds the KL between densities of X_1^g $_1^g$ and $\hat X^g_1$

Formula: by Girsanov's theorem

$$
\mathsf{KL}(X^g || \hat{X}^g) = \int_0^1 \frac{|1 + \frac{1}{2}\beta_s A_s (g_s^2 - \sigma_s^2)|^2}{2|g_s|^2} L_s ds
$$

where $L_s = \mathbb{E}^{x_0} \left[|\hat{b}_s(I_s, x_0) - b_s(I_s, x_0)|^2 \right]$

Question

Any choice of q that is optimal?

Criteria: Consider the KL between the path measures of

- the truth SDE solution $X^g = (X^g_s)_{s \in [0,1]}$ with drift b
- $\bullet\,$ the approximation $\hat{X}^g=(\hat{X}^g_s)_{s\in[0,1]}$ with a learned \hat{b} which upper bounds the KL between densities of X_1^g $_1^g$ and $\hat X^g_1$

Formula: by Girsanov's theorem

$$
\text{KL}(X^g || \hat{X}^g) = \int_0^1 \frac{|1 + \frac{1}{2}\beta_s A_s (g_s^2 - \sigma_s^2)|^2}{2|g_s|^2} L_s ds
$$

where $L_s = \mathbb{E}^{x_0} \left[|\hat{b}_s(I_s, x_0) - b_s(I_s, x_0)|^2 \right]$

Claim: KL is minimized if we set $g_s = g_s^{\mathsf{F}}$ with

$$
g_s^{\mathsf{F}} = \left| 2s\sigma_s^2 \frac{d}{ds} \log \frac{\beta_s}{\sqrt{s}\sigma_s} \right|^{1/2}
$$

Föllmer's Processes

Theorem

If $\beta_s/(\sqrt{s}\sigma_s)$ is non-decreasing, then $X^{g^{\mathsf{F}}}$ is an Föllmer process

- Föllmer processes solve the Schrödinger bridge problem when one endpoint is a point mass, offering an entropy-regularized solution to optimal transport
- Usually defined by minimizing KL against the Wiener process subject to constraints on the endpoints
- Our result offers a generalization and new interpretation of Föllmer as the minimizer of the KL of the exact forecasting process from the estimated one, which is more tailored to statistical inference

Föllmer process [Föllmer, 1986] wide applications In functional inequality [Lehec 2013], [Eldan, Lehec, Shenfeld 2020], ... In sampling: [Zhang, Chen 2021], [Wang, Jiao, Xu, Wang, Yang 2021], [Huang et al, 2021], [Vargas et al, 2023], [Liu et al, 2023], ...

Other Design Considerations

Behavior of Drift at $s = 0$

Assume the density of $\mu(\cdot|x_0)$ is upper bounded by an exponential tailed density, and $\sigma_0>0$, then $\dot\beta_0=0$ is the sufficient and necessary condition for $\lim_{s\to 0} |b_s(x,x_0)| < \infty$, for any x, x_0

- When $\dot{\beta}_0=0$, $\lim_{s\to 0}|\nabla b_s(x,x_0)|<\infty$ as well
- \bullet Thus $\dot\beta_0=0$ can be beneficial for the Lipschitz bound of b
- Practical significance: $\beta_s = s^2$ lead to more stable training than $\beta_s = s$
- We take $\beta_s = s^2$ throughout our experiments

1 [Building the SDE with Stochastic Interpolants](#page-8-0)

2 [Tunnable Diffusions, KL Optimization and Föllmer's Processes](#page-13-0)

3 [Forecasting Stochastic NSE and Videos](#page-24-0)

Forecasting 2D Stochastically Forced Navier Stokes

2d NSE with Stochastic Forcing

$$
d\omega + v \cdot \nabla \omega dt = \nu \Delta \omega dt - \alpha \omega dt + \epsilon d\eta \quad \text{on} \quad \mathbb{T}^2
$$

$$
\quad \bullet \ \ v = \nabla^\perp \psi = (-\partial_y \psi, \partial_x \psi) \ \hbox{is the velocity}
$$

- ψ is the stream function, solution to $-\Delta\psi = \omega$
- \bullet dn is white-in-time random forcing on a few Fourier modes

•
$$
\nu = 10^{-3}, \alpha = 0.1, \epsilon = 1
$$

• Ergodicity shown in [Hairer, Mattingly, 2006]

Goal: Forecast $\omega_{t+\tau}$ from ω_t under stationarity

Figure: Probabilistic forecasting with lag $\tau = 2$ (autocorrelation 10%). Resolution 128×128 , using $200K$ data pairs for training 2M-parameter-Unet for 50 epochs

- Necessity of probabilistic over deterministic forecasting
- Forecasting efficiency: for this example 100 times faster than running the PDE simulation

Effects of Tuning q

Figure: The 1D conditional distributions of total enstrophy and total energy of $\omega_{t+\tau}$, given a fixed initial vorticity field ω_t and $\tau = 1$. Here we compare between the truth, generated samples via SDEs with $\sigma_s dW_s$, via SDE with $g_s^{\rm F} dW_s$ which corresponds to a Föllmer process, and via ODEs with Gaussian bases a.k.a. conditional flow matching

Forecasting with Incomplete Observation

Let ω_t be of 32×32 while $\omega_{t+\tau}$ is of 128×128

Figure: Probabilistic forecasting with low resolution input, using $200K$ data pairs for training 2M-parameter-Unet for 50 epochs

Forecasting Videos: CLEVER Datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A new, red cube enters the scene. Third row: Real trajectory. Fourth row: Generated trajectory. A new green cube enters the scene, and collision physics is respected (green ball hits red cube).

Quantitative Results

Table: FVD computed on 256 test set videos, with the model generating 100 completions for each video. Results are reported for 100k grad steps and 250k. The auto-enc represents the FVD of the pretrained encoder-decoder vs the real data. It serves as a bound on the possible model performance, as the modeling is done in the latent space of a pre-trained VQGAN.

RIVER [Davtyan, Sameni, Favaro 2023]

Summary

Probabilistic forecasting with stochastic generative dynamics

- Learn dynamics from point mass to conditional distribution
- Build SDE dynamics with stochastic interpolants
- Tune diffusion coefficients to optimize KL estimation error
- Optimized processes are Föllmer processes, which are also entropy minimizing Schrödinger bridges
- Design choices of interpolants for improved regularity
- High-Dim experiments: 2D stochastic Navier-Stokes, videos
- Future work: further design using connections to renormalizing group flows, and generative modeling in function space

Thank You!