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Context

Forecasting Problem
Given time series (ykτ )k∈Z, predict y(k+1)τ from new ykτ

• Examples: fluids, daily weather measurements, video frames
• Assume successive observations ∼ joint PDF µ(ykτ , y(k+1)τ )

• Goal is conditional sampling y(k+1)τ ∼ µ(·|ykτ )

Figure credited to Google online search



3/22

Deterministic Forecasting

Goal of Deterministic Forecasting

Output a single forecast by learning a function F̂

Linear regression, kernel regression, Koopman operator, ...

e.g., [Dellnitz, Junge 1999], [Berry, Giannakis, Harlim 2015], [Kutz, Brunton, Brunton,

Proctor 2016], [Alexander, Giannakis 2020], ...
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Output a single forecast by learning a function F̂

Expressive dynamical parametrization: e.g., deep neural nets, neural ODEs, operators

e.g. [Li et al, 2021], [Jiang, Lu, Orlova, Willett, 2023], ...

however deterministic forecast overlooks uncertainties :(
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Probabilistic Forecasting

Goal of Probabilistic Forecasting
Output an ensemble of forecasts by learning a distribution

Stochastic Koopman operators e.g., [Wanner, Mezic 2022], [Zhao, Jiang 2023]
Learning SDEs and probabilistic models e.g., Gaussians, neural SDEs, ...
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Probabilistic Forecasting

Goal of Probabilistic Forecasting
Output an ensemble of forecasts by learning a distribution

Goal: Learn an SDE that maps a Diracs at ykτ to µ̂(y(k+1)τ |ykτ )
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Roadmap of This Talk

1 Building the SDE with Stochastic Interpolants

2 Tunnable Diffusions, KL Optimization and Föllmer’s Processes

3 Forecasting Stochastic NSE and Videos
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Stochastic Interpolants

Let x0 and x1 denote the current and forecasting state

Stochastic Interpolants
Define the stochastic process Is = αsx0 + βsx1 + σsWs

• α0 = β1 = 1 and α1 = β0 = σ1 = 0 ⇝ I0 = x0, I1 = x1

• (x0, x1) ∼ µ(x0, x1) joint distribution
• W = (Ws)s∈[0,1] is a Wiener process with W ⊥ (x0, x1)

• Fact: dIs = (α̇sx0 + β̇sx1 + σ̇sWs)ds+ σsdWs

• Define the SDE
dXs = bs(Xs, x0)ds+ σsdWs, Xs=0 = x0

where bs(x, x0) = E[α̇sx0 + β̇sx1 + σ̇sWs|Is = x, x0]

• It holds Law(Xs) = Law(Is|x0). In particular Xs=1 ∼ µ(·|x0)

[Albergo, Vanden-Eijnden, 2022], [Albergo, Boffi, Vanden-Eijnden 2023]

See also [Liu, Gong, Liu 2022], [Lipman et al 2022], ...
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Learning the Drift via Square Loss Regression

• Is = αsx0 + βsx1 + σsWs

• bs(x, x0) = E[α̇sx0 + β̇sx1 + σ̇sWs|Is = x, x0]

• Conditional expectation ⇝ square loss regression

• The drift bs(x, x0) is the unique minimizer of

Lb[b̂s] =

∫ 1

0
E
[
|b̂s(Is, x0)− α̇sx0 − β̇sx1 − σ̇sWs|2]ds

• Loss function is simulation-free: Ws
d
=

√
sz with z ∼ N(0, I)

• Parametrize b̂s by neural nets and optimize Lb via SGD
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A Synthetic Example: Multimodal Jump Processes

2D particle jump-diffusion dynamics:

• Between the jumps, the particle moves according to the
Langevin dynamics dxt = ∇ log ρGMM(xt)dt+

√
2dWt

• At jump times specified by a Poisson process with rate λ = 2,
the particle is rotated counterclockwise by an angle 2π/5
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Forecasting A Synthetic Multimodal Jump Processes

Angular KDE

truth

forecast

Ground Truth KDE Forecasted KDE
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Tunnable Diffusions for SDEs

Trading drift and diffusion terms
∇ · (ρ∇ log ρ) = ∆ρ so can trade drift −∇ log ρ with diffusion dW

• For dXs = bs(Xs, x0)ds+σsdWs, Law(Xs) = Law(Xg
s ) where

dXg
s = bgs(X

g
s , x0)ds+ gsdWs

with bgs(x, x0) = bs(x, x0) +
1
2(g

2
s − σ2s)∇ log ρs(x|x0)

• ρs(x|x0) is the PDF of Xs
d
= Is|x0, with

∇ log ρs(x|x0) = As (βsbs(x, x0)− cs(x, x0))
• As = [sσs(β̇sσs − βsσ̇s)]

−1

• cs(x, x0) = β̇sx+ (βsα̇s − β̇sαs)x0

• A family of SDEs serve for generation purposes

We can estimate b first and then adjust both the noise amplitude
gs and the drift bg a-posteriori without having to retrain b
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Optimize over g

Question
Any choice of g that is optimal?

Criteria: Consider the KL between the path measures of
• the truth SDE solution Xg = (Xg

s )s∈[0,1] with drift b
• the approximation X̂g = (X̂g

s )s∈[0,1] with a learned b̂
which upper bounds the KL between densities of Xg

1 and X̂g
1

Formula: by Girsanov’s theorem

KL(Xg||X̂g) =

∫ 1

0

|1 + 1
2βsAs(g

2
s − σ2s)|2

2|gs|2
Lsds

where Ls = Ex0
[
|b̂s(Is, x0)− bs(Is, x0)|2

]
Claim: KL is minimized if we set gs = gFs with

gFs =

∣∣∣∣2sσ2s dds log βs√
sσs

∣∣∣∣1/2
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Föllmer’s Processes

Theorem

If βs/(
√
sσs) is non-decreasing, then XgF is an Föllmer process

• Föllmer processes solve the Schrödinger bridge problem
when one endpoint is a point mass, offering an
entropy-regularized solution to optimal transport

• Usually defined by minimizing KL against the Wiener process
subject to constraints on the endpoints

• Our result offers a generalization and new interpretation of
Föllmer as the minimizer of the KL of the exact forecasting
process from the estimated one, which is more tailored to
statistical inference

Föllmer process [Föllmer, 1986] wide applications
In functional inequality [Lehec 2013], [Eldan, Lehec, Shenfeld 2020], ...
In sampling: [Zhang, Chen 2021], [Wang, Jiao, Xu, Wang, Yang 2021], [Huang et al,

2021], [Vargas et al, 2023], [Liu et al, 2023], ...
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Other Design Considerations

Behavior of Drift at s = 0

Assume the density of µ(·|x0) is upper bounded by an exponential
tailed density, and σ0 > 0, then β̇0 = 0 is the sufficient and
necessary condition for lims→0 |bs(x, x0)| <∞, for any x, x0

• When β̇0 = 0, lims→0 |∇bs(x, x0)| <∞ as well

• Thus β̇0 = 0 can be beneficial for the Lipschitz bound of b

• Practical significance: βs = s2 lead to more stable training
than βs = s

• We take βs = s2 throughout our experiments
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Forecasting 2D Stochastically Forced Navier Stokes

2d NSE with Stochastic Forcing

dω + v · ∇ωdt = ν∆ωdt− αωdt+ ϵdη on T2

• v = ∇⊥ψ = (−∂yψ, ∂xψ) is the velocity
• ψ is the stream function, solution to −∆ψ = ω

• dη is white-in-time random forcing on a few Fourier modes
• ν = 10−3, α = 0.1, ϵ = 1

• Ergodicity shown in [Hairer, Mattingly, 2006]

Goal: Forecast ωt+τ from ωt under stationarity
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Figure: Probabilistic forecasting with lag τ = 2 (autocorrelation 10%).
Resolution 128× 128, using 200K data pairs for training
2M-parameter-Unet for 50 epochs

• Necessity of probabilistic over deterministic forecasting
• Forecasting efficiency: for this example 100 times faster

than running the PDE simulation
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Effects of Tuning g

Figure: The 1D conditional distributions of total enstrophy and total
energy of ωt+τ , given a fixed initial vorticity field ωt and τ = 1. Here we
compare between the truth, generated samples via SDEs with σsdWs, via
SDE with gFs dWs which corresponds to a Föllmer process, and via ODEs
with Gaussian bases a.k.a. conditional flow matching
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Forecasting with Incomplete Observation

Let ωt be of 32× 32 while ωt+τ is of 128× 128

Figure: Probabilistic forecasting with low resolution input, using 200K
data pairs for training 2M-parameter-Unet for 50 epochs
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Forecasting Videos: CLEVER Datasets

Figure: Top row: Real trajectory. Second row: Generated trajectory. A
new, red cube enters the scene. Third row: Real trajectory. Fourth
row: Generated trajectory. A new green cube enters the scene, and
collision physics is respected (green ball hits red cube).
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Quantitative Results

KTH CLEVRER

Method 100k 250k 100k 250k

RIVER 46.69 41.88 60.40 48.96
PFI (ours) 44.38 39.13 54.7 39.31

Auto-enc. 33.45 33.45 2.79 2.79

Table: FVD computed on 256 test set videos, with the model generating
100 completions for each video. Results are reported for 100k grad steps
and 250k. The auto-enc represents the FVD of the pretrained
encoder-decoder vs the real data. It serves as a bound on the possible
model performance, as the modeling is done in the latent space of a
pre-trained VQGAN.

RIVER [Davtyan, Sameni, Favaro 2023]
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Summary

Probabilistic forecasting with stochastic generative dynamics

• Learn dynamics from point mass to conditional distribution

• Build SDE dynamics with stochastic interpolants

• Tune diffusion coefficients to optimize KL estimation error

• Optimized processes are Föllmer processes, which are also
entropy minimizing Schrödinger bridges

• Design choices of interpolants for improved regularity

• High-Dim experiments: 2D stochastic Navier-Stokes, videos

• Future work: further design using connections to renormalizing
group flows, and generative modeling in function space

Thank You!
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